Short-Term RCT of Increased Dietary Potassium from Potato or Potassium Gluconate: Effect on Blood Pressure, Microcirculation, and Potassium and Sodium Retention in Pre-Hypertensive-to-Hypertensive Adults

Michael S Stone, Berdine R Martin, Connie M Weaver, Michael S Stone, Berdine R Martin, Connie M Weaver

Abstract

Increased potassium intake has been linked to improvements in cardiovascular and other health outcomes. We assessed increasing potassium intake through food or supplements as part of a controlled diet on blood pressure (BP), microcirculation (endothelial function), and potassium and sodium retention in thirty pre-hypertensive-to-hypertensive men and women. Participants were randomly assigned to a sequence of four 17 day dietary potassium treatments: a basal diet (control) of 60 mmol/d and three phases of 85 mmol/d added as potatoes, French fries, or a potassium gluconate supplement. Blood pressure was measured by manual auscultation, cutaneous microvascular and endothelial function by thermal hyperemia, utilizing laser Doppler flowmetry, and mineral retention by metabolic balance. There were no significant differences among treatments for end-of-treatment BP, change in BP over time, or endothelial function using a mixed-model ANOVA. However, there was a greater change in systolic blood pressure (SBP) over time by feeding baked/boiled potatoes compared with control (-6.0 mmHg vs. -2.6 mmHg; p = 0.011) using contrast analysis. Potassium retention was highest with supplements. Individuals with a higher cardiometabolic risk may benefit by increasing potassium intake. This trial was registered at ClinicalTrials.gov as NCT02697708.

Keywords: blood pressure; cardiometabolic risk; controlled feeding study; microcirculation; potassium; retention; sodium.

Conflict of interest statement

The authors declare no conflict of interest. The sponsor had no role in the design, execution, interpretation, or writing of the study.

Figures

Figure 1
Figure 1
Flow Diagram of Potassium Hypertension and Retention Study.
Figure 2
Figure 2
Blood pressure throughout each intervention. (A) Systolic blood pressure (SBP) and (B) diastolic blood pressure (DBP) means (N = 30) for each measurement day in each intervention phase.
Figure 3
Figure 3
Secondary BP outcome: change in BP over time. * denotes significant difference (p < 0.05) between potato and other groups.
Figure 4
Figure 4
Primary BP outcome: comparison of end-of-treatment (A) systolic blood pressure (SBP) and (B) diastolic blood pressure (DBP) for all intervention phases with an adjustment for baseline BP.
Figure 5
Figure 5
(A) Urinary (N = 28) and (B) Fecal (N = 20) excretion of potassium and sodium in hypertensive adults fed a typical potassium intake (control) and supplemented potassium through food (baked or boiled potatoes or French fries (FF)) or supplement. * denotes significant differences between control and potassium groups (p < 0.05) for potassium retention. # denotes significant differences between groups for sodium retention (i.e., control and supplement were both significantly different from potato and FF, but not each other). NS, no significant differences. To convert to mmol/d for potassium, divide by 39; and for sodium, divide by 23.
Figure 6
Figure 6
Potassium retention as mg/d (A) and percent (%) of intake (B) in hypertensive adults on a controlled diet. * denotes significant difference (p < 0.05) between supplement and other groups. NS, not significant differences. To convert to mmol/d, divide by 39.
Figure 7
Figure 7
Differences in sodium retention as mg/d (A) and percent (%) of intake (B) in hypertensives on a controlled diet. * denotes significant difference (p < 0.05) between potato and other groups. To convert to mmol/d, divide by 23.

References

    1. Dietary Guidelines Advisory Committee . Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans, 2010. U.S. Department of Agriculture, Agricultural Research Service; Washington, DC, USA: 2011.
    1. U.S. Department of Health. Human Services. U.S. Department of Agriculture . 2015–2020 Dietary Guidelines for Americans. 8th ed. U.S. Department of Agriculture, Agricultural Research Service; Washington, DC, USA: 2015.
    1. Dietary Guidelines Advisory Committee . Scientific Report of the 2020 Dietary Guidelines Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services. U.S. Department of Agriculture, Agriculture Research Services; Washington, DC, USA: 2020.
    1. Roger V.L., Go A.S., Lloyd-Jones D.M., Benjamin E.J., Berry J.D., Borden W.B., Bravata D.M., Dai S., Ford E.S., Fox C.S., et al. Executive summary: Heart disease and stroke statistics—2012 update: A report from the American Heart Association. Circulation. 2012;125:188–197.
    1. Lopez A.D., Mathers C.D. Measuring the global burden of disease and epidemiological transitions: 2002–2030. Ann. Trop. Med. Parasitol. 2006;100:481–499. doi: 10.1179/136485906X97417.
    1. Newberry S.J., Chung M., Anderson C.A., Chen C., Fu Z., Tang A., Zhao N., Booth M., Marks J., Hollands S., et al. Sodium and Potassium Intake: Effects on Chronic Disease Outcomes and Risks. Agency for Healthcare and Research Quality (US); Rockville, MD, USA: 2018.
    1. Aburto N.J., Hanson S., Gutierrez H., Hooper L., Elliott P., Cappuccio F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ. 2013;346:f1378. doi: 10.1136/bmj.f1378.
    1. Whelton P.K. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA. 1997;277:1624–1632. doi: 10.1001/jama.1997.03540440058033.
    1. Cappuccio F.P., MacGregor G.A. Does potassium supplementation lower blood pressure? A meta-analysis of published trials. J. Hypertens. 1991;9:465–473. doi: 10.1097/00004872-199105000-00011.
    1. Geleijnse J.M., Kok F.J., Grobbee D.E. Blood pressure response to changes in sodium and potassium intake: A metaregression analysis of randomised trials. J. Hum. Hypertens. 2003;17:471–480. doi: 10.1038/sj.jhh.1001575.
    1. Binia A., Jaeger J., Hu Y., Singh A., Zimmermann D. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: A meta-analysis of randomized controlled trials. J. Hypertens. 2015;33:1509–1520. doi: 10.1097/HJH.0000000000000611.
    1. Dickinson H.O., Nicolson D.J., Campbell F., Beyer F.R., Mason J. Potassium supplementation for the management of primary hypertension in adults. Cochrane Database Syst. Rev. 2006;19:CD004641. doi: 10.1002/14651858.CD004641.pub2.
    1. Chalmers J., Morgan T., Doyle A., Dickson B., Hopper J., Mathews J., Matthews G., Moulds R., Myers J., Nowson C. Australian National Health and Medical Research Council dietary salt study in mild hypertension. J. Hypertens. Suppl. 1986;4:629–637.
    1. Berry S.E., Mulla U.Z., Chowienczyk P.J., Sanders T.A.B. Increased potassium intake from fruit and vegetables or supplements does not lower blood pressure or improve vascular function in UK men and women with early hypertension: A randomised controlled trial. Br. J. Nutr. 2010;104:1839–1847. doi: 10.1017/S0007114510002904.
    1. Miller E.R., 3rd, Cooper L.A., Carson K.A., Wang N.Y., Appel L.J., Gayles D., Charleston J., White K., You N., Weng Y., et al. A Dietary Intervention in Urban African Americans: Results of the “Five Plus Nuts and Beans” Randomized Trial. Am. J. Prev. Med. 2016;50:87–95. doi: 10.1016/j.amepre.2015.06.010.
    1. Appel L.J., Moore T.J., Obarzanek E., Vollmer W.M., Svetkey L.P., Sacks F.M., Bray G.A., Vogt T.M., Cutler J.A., Windhauser M.M., et al. A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure. N. Engl. J. Med. 1997;336:1117–1124. doi: 10.1056/NEJM199704173361601.
    1. Sacks F.M., Svetkey L.P., Vollmer W.M., Appel L.J., Bray G.A., Harsha D., Obarzanek E., Conlin P.R., Miller E.R., Simons-Morton D.G., et al. Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. N. Engl. J. Med. 2001;344:3–10. doi: 10.1056/NEJM200101043440101.
    1. Svetkey L.P., Simons-Morton D.G., Proschan M.A., Sacks F.M., Conlin P.R., Harsha D., Moore T.J. DASH-Sodium Collaborative Research Group Effect of the Dietary Approaches to Stop Hypertension Diet and Reduced Sodium Intake on Blood Pressure Control. J. Clin. Hypertens. 2004;6:373–381. doi: 10.1111/j.1524-6175.2004.03523.x.
    1. Weaver C.M., Stone M.S., Lobene A.J., Cladis D.P., Hodges J.K. What Is the Evidence Base for a Potassium Requirement? Nutr. Today. 2018;53:184–195. doi: 10.1097/NT.0000000000000298.
    1. Hené R.J., Koomans H.A., Boer P., Mees E.J.D. Adaptation to chronic potassium loading in normal man. Miner. Electrolyte Metab. 1986;12:165–172.
    1. Holbrook J.T., Patterson K.Y., Bodner J.E., Douglas L.W., Veillon C., Kelsay J.L., Mertz W., Smith J.C. Sodium and potassium intake and balance in adults consuming self-selected diets. Am. J. Clin. Nutr. 1984;40:786–793. doi: 10.1093/ajcn/40.4.786.
    1. Rosa R.M., De Jesus E., Sperling K., Suh A., Gmurczyk A., Myrie K.A., Rosner K., Lerma E., Yu W., Breuer R., et al. Gastrointestinal and renal excretion of potassium in African–Americans and White Americans. J. Hypertens. 2012;30:2373–2377. doi: 10.1097/HJH.0b013e32835a27b3.
    1. Palacios C., Wigertz K., Martin B.R., Braun M., Pratt J.H., Peacock M., Weaver C.M. Racial differences in potassium homeostasis in response to differences in dietary sodium in girls. Am. J. Clin. Nutr. 2009;91:597–603. doi: 10.3945/ajcn.2009.28400.
    1. Consolazio C.F., Matoush L.O., Nelson R.A., Harding R.S., Canham J.E. Excretion of Sodium, Potassium, Magnesium and Iron in Human Sweat and the Relation of Each to Balance and Requirements. J. Nutr. 1963;79:407–415. doi: 10.1093/jn/79.4.407.
    1. Costill D.L., Côté R., Fink W.J. Dietary potassium and heavy exercise: Effects on muscle water and electrolytes. Am. J. Clin. Nutr. 1982;36:266–275. doi: 10.1093/ajcn/36.2.266.
    1. Fukumoto T., Tanaka T., Fujioka H., Yoshihara S., Ochi T., Kuroiwa A. Differences in composition of sweat induced by thermal exposure and by running exercise. Clin. Cardiol. 1988;11:707–709. doi: 10.1002/clc.4960111010.
    1. Armstrong L.E., Hubbard R.W., Szlyk P.C., Matthew W.T., Sils I.V. Voluntary dehydration and electrolyte losses during prolonged exercise in the heat. Aviat. Space Environ. Med. 1985;56:765–770.
    1. Malhotra M.S., Sridharan K., Venkataswamy Y., Rai R.M., Pichan G., Radhakrishnan U., Grover S.K. Effect of restricted potassium intake on its excretion and on physiological responses during heat stress. Graefe’s Arch. Clin. Exp. Ophthalmol. 1981;47:169–179. doi: 10.1007/BF00421669.
    1. Khaw K.T., Barrett-Connor E. The association between blood pressure, age, and dietary sodium and potassium: A population study. Circulation. 1988;77:53–61. doi: 10.1161/01.CIR.77.1.53.
    1. Chang H.-Y., Hu Y.-W., Yue C.-S.J., Wen Y.-W., Yeh W.-T., Hsu L.-S., Tsai S.-Y., Pan W.-H. Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am. J. Clin. Nutr. 2006;83:1289–1296. doi: 10.1093/ajcn/83.6.1289.
    1. Nowson C.A., Morgan T.O., Gibbons C. Decreasing Dietary Sodium While Following a Self-Selected Potassium-Rich Diet Reduces Blood Pressure. J. Nutr. 2003;133:4118–4123. doi: 10.1093/jn/133.12.4118.
    1. Hypertension Prevention Trial Research Group The Hypertension Prevention Trial: Three-year effects of dietary changes on blood pressure. Arch. Intern. Med. 1990;150:153–162. doi: 10.1001/archinte.1990.00390130131021.
    1. Whelton P.K., Appel L., Charleston J., Dalcin A.T., Ewart C., Fried L., Kaidy D., Klag M.J., Kumanyika S., Steffen L., et al. The Effects of Nonpharmacologic Interventions on Blood Pressure of Persons with High Normal Levels. JAMA. 1992;267:1213–1220. doi: 10.1001/jama.1992.03480090061028.
    1. Alba B.K., Stanhewicz A.E., Kenney W.L., Alexander L.M. Acute dairy milk ingestion does not improve nitric oxide-dependent vasodilation in the cutaneous microcirculation. Br. J. Nutr. 2016;116:204–210. doi: 10.1017/S0007114516001835.
    1. Stanhewicz A.E., Alexander L.M., Kenney W.L. Oral sapropterin acutely augments reflex vasodilation in aged human skin through nitric oxide-dependent mechanisms. J. Appl. Physiol. 2013;115:972–978. doi: 10.1152/japplphysiol.00481.2013.
    1. Spence L.A., Lipscomb E.R., Cadogan J., Martin B., Wastney M.E., Peacock M., Weaver C.M. The effect of soy protein and soy isoflavones on calcium metabolism in postmenopausal women: A randomized crossover study. Am. J. Clin. Nutr. 2005;81:916–922. doi: 10.1093/ajcn/81.4.916.
    1. Gorostidi M., Vinyoles E., Banegas J.R., De La Sierra A. Prevalence of white-coat and masked hypertension in national and international registries. Hypertens. Res. 2015;38:1–7. doi: 10.1038/hr.2014.149.
    1. Brunt V.E., Minson C.T. Cutaneous thermal hyperemia: More than skin deep. J. Appl. Physiol. 2011;111:5–7. doi: 10.1152/japplphysiol.00544.2011.
    1. Fujii N., Brunt V.E., Minson C.T. Tempol improves cutaneous thermal hyperemia through increasing nitric oxide bioavailability in young smokers. Am. J. Physiol. Circ. Physiol. 2014;306:H1507–H1511. doi: 10.1152/ajpheart.00886.2013.
    1. Cracowski J.-L., Minson C.T., Salvat-Melis M., Halliwill J.R. Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol. Sci. 2006;27:503–508. doi: 10.1016/j.tips.2006.07.008.
    1. Palacios C., Wigertz K., Martin B.R., Jackman L., Pratt J.H., Peacock M., McCabe G., Weaver C.M. Sodium Retention in Black and White Female Adolescents in Response to Salt Intake. J. Clin. Endocrinol. Metab. 2004;89:1858–1863. doi: 10.1210/jc.2003-031446.
    1. Squires R.D., Huth E.J. Experimental potassium depletion in normal human subjects. I. Relation of ionic intakes to the renal conservation of potassium. J. Clin. Investig. 1959;38:1134–1148. doi: 10.1172/JCI103890.
    1. Kodama N., Morikuni E., Matsuzaki N., Yoshioka Y.H., Takeyama H., Yamada H., Kitajima H., Nishimuta M. Sodium and Potassium Balances in Japanese Young Adults. J. Nutr. Sci. Vitaminol. 2005;51:161–168. doi: 10.3177/jnsv.51.161.
    1. Soleimani M., Bergman J.A., Hosford M.A., McKinney T.D. Potassium depletion increases luminal Na+/H+ exchange and basolateral Na+:CO3=:HCO3- cotransport in rat renal cortex. J. Clin. Investig. 1990;86:1076–1083. doi: 10.1172/JCI114810.
    1. Veiras L.C., Han J., Ralph D.L., McDonough A.A. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation During Angiotensin II Hypertension. Hypertension. 2016;68:904–912. doi: 10.1161/HYPERTENSIONAHA.116.07389.
    1. Sorensen M.V., Grossmann S., Roesinger M., Gresko N., Todkar A.P., Barmettler G., Ziegler U., Odermatt A., Loffing-Cueni D., Loffing J. Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int. 2013;83:811–824. doi: 10.1038/ki.2013.14.
    1. Juraschek S.P., Woodward M., Sacks F.M., Carey V.J., Miller I.E.R., Appel L.J. Time Course of Change in Blood Pressure From Sodium Reduction and the DASH Diet. Hypertension. 2017;70:923–929. doi: 10.1161/HYPERTENSIONAHA.117.10017.

Source: PubMed

3
Sottoscrivi