Dorsal anterior cingulate cortex in typically developing children: Laterality analysis

Jue Wang, Ning Yang, Wei Liao, Han Zhang, Chao-Gan Yan, Yu-Feng Zang, Xi-Nian Zuo, Jue Wang, Ning Yang, Wei Liao, Han Zhang, Chao-Gan Yan, Yu-Feng Zang, Xi-Nian Zuo

Abstract

We aimed to elucidate the dACC laterality in typically developing children and their sex/age-related differences with a sample of 84 right-handed children (6-16 years, 42 boys). We first replicated the previous finding observed in adults that gray matter density asymmetry in the dACC was region-specific: leftward (left > right) in its superior part, rightward (left < right) in its inferior part. Intrinsic connectivity analysis of these regions further revealed region-specific asymmetric connectivity profiles in dACC as well as their sex and age differences. Specifically, the superior dACC connectivity with frontoparietal network and the inferior dACC connectivity with visual network are rightward. The superior dACC connectivity with the default network (lateral temporal cortex) was more involved in the left hemisphere. In contrast, the inferior dACC connectivity with the default network (anterior medial prefrontal cortex) was more lateralized towards the right hemisphere. The superior dACC connectivity with lateral visual cortex was more distinct across two hemispheres in girls than that in boys. This connection in boys changed with age from right-prominent to left-prominent asymmetry whereas girls developed the connection from left-prominent to no asymmetry. These findings not only highlight the complexity and laterality of the dACC but also provided insights into dynamical structure-function relationships during the development.

Figures

Fig. 1
Fig. 1
Illustration of the overall procedure of image analysis. (A) Structural image analysis. Individual raw gray matter density (GMD) images are first normalized to a symmetric gray matter template in the standard brain space and then spatially smoothed. Paired t-tests were performed on smoothed GMD images and their left–right flipped (LR-flipped) versions to achieve a T-map for GMD differences between the left hemisphere (LH) and the right hemisphere (RH). This laterality map derives seeds of regions of interests for superior and inferior subdivisions of the dorsal cingulate cortex (dACC) for next steps of functional image analysis (B). In this second stage, individual raw BOLD images are first normalized to the symmetric standard brain template and then seed-based functional connectivity maps are estimated by using the dACC seeds in both hemispheres, and quantified with their Fisher's z-maps. Flexible factor analysis is employed to detect laterality effects on both ipsilateral (L-L versus R-R) and contralateral (L-R versus R-L) functional connectivity of the dACC using the left dACC (L.dACC) seeded z-maps and the LR-flipped versions (LR-flipped R.dACC) of the right dACC (R.dACC) seeded z-maps as inputs.
Fig. 2
Fig. 2
Laterality of gray matter density (GMD) and its regional difference in dACC. T-maps of the paired t-tests on GMD between the left and the right hemisphere are overlaid onto the symmetric structural template. The warm colors indicate a leftward (left > right) laterality whereas the cool colors represents degree of a rightward (right > left) laterality of GMD. Region-specific asymmetry of GMD is detected in dACC where (A) inferior dACC seeds (±5, 17, 22) were rightward and (B) superior dACC seeds (±6, 19, 31) showed leftward asymmetry.
Fig. 3
Fig. 3
Intrinsic functional connectivity (iFC) of the dorsal anterior cingulate cortex (dACC). Mean Fisher-z maps of all individual iFC of the four seeds for the superior (A: left hemisphere; B: right hemisphere) and inferior (C: left hemisphere; D: right hemisphere) dACC are rendered onto the Conte69_32k surfaces. All the maps displayed for lateral and medial views of both hemispheres. Gray curves indicate the boundaries between the seven networks in Yeo et al. (2011). The locations of the dACC seeds are labeled as a green circle on the surfaces.
Fig. 4
Fig. 4
Laterality of superior dACC's functional connectivity and its network distribution. T-value maps of the flexible factor analysis (see in Section 2) are rendered onto the Conte69_32k surfaces. Maps of the seven networks including visual (Visual), somatomotor (SomMot), dorsal attention (DorsAttn), ventral attention (VentAttn), limbic (Limbic), frontoparietal (Control) and default (Default) networks are also displayed on these surfaces. All the maps displayed for multiple views of both the ipsilateral hemisphere (A, B) and the contralateral hemisphere (C, D) in Conte69_32k space: A, anterior; P, posterior; D, dorsal; V, ventral. The functional network organization of the human cerebral cortex is derived from Yeo et al. (2011). Colors reflect regions estimated to be within the same network. Black curves indicate the boundaries between the networks. The locations of the superior dACC seeds are labeled as a green circle on the surfaces for laterality of (A) the ipsilateral functional connectivity (LL versus RR: warm colors for LL > RR, cool colors for LL < RR) and the contralateral functional connectivity (LR versus RL: warm colors for LR > RL, cool colors for LR < RL).
Fig. 5
Fig. 5
Laterality of inferior dACC's functional connectivity and its network distribution. T-value maps of the flexible factor analysis (see in Section 2) are rendered onto the Conte69_32k surfaces. Maps of the seven networks including visual (Visual), somatomotor (SomMot), dorsal attention (DorsAttn), ventral attention (VentAttn), limbic (Limbic), frontoparietal (Control) and default (Default) networks are also displayed on these surfaces. All the maps displayed for multiple views of both the ipsilateral hemisphere (A, B) and the contralateral hemisphere (C, D) in Conte69_32k space: A, anterior; P, posterior; D, dorsal; V, ventral. The functional network organization of the human cerebral cortex is derived from Yeo et al. (2011). Colors reflect regions estimated to be within the same network. Black curves indicate the boundaries between the networks. The locations of the inferior dACC seeds are labeled as a green circle on the surfaces for laterality of (A) the ipsilateral functional connectivity (LL versus RR: warm colors for LL > RR, cool colors for LL < RR) and the contralateral functional connectivity (LR versus RL: warm colors for LR > RL, cool colors for LR < RL).
Fig. 6
Fig. 6
Interaction between the laterality of superior dACC's ipsilateral functional connectivity and sex. (A) T-value maps of the flexible factor analysis (see in Section 2) are rendered onto the Conte69_32k surfaces. The maps displayed for multiple views of the ipsilateral hemisphere in Conte69_32k space: A, anterior; P, posterior; D, dorsal; V, ventral. Black curves indicate the boundaries between the seven neural networks. The location of the superior dACC seed is labeled as a green circle on the surfaces for laterality of the ipsilateral functional connectivity. The colorbar indicates different directions of the interaction: warm colors for female and cool colors for male. (B) Scatter bar plots are displayed for an intuitive illustration on the laterality–sex interaction in the region cluster as shown in (A). The laterality index is quantified with LL-RR adjusted for head motion and global mean connectivity.
Fig. 7
Fig. 7
Interactions among the laterality of dACC's functional connectivity, sex and age. T-value maps of the three-way interaction derived from the flexible factor analysis (see in Section 2) are rendered onto the Conte69_32k surfaces for (A) the superior dACC ipsilateral functional connectivity and (C) the inferior dACC contralateral functional connectivity. The maps displayed for multiple views of the ipsilateral hemisphere in Conte69_32k space: A, anterior; P, posterior; D, dorsal; V, ventral. Black curves indicate the boundaries between the seven neural networks. The locations of the superior and inferior dACC seeds are labeled as a green circle on the surfaces. The colorbar indicates different directions of the interaction. Scatter bar plots are displayed in (B) for an intuitive illustration on the three-way interaction in the region cluster as shown in (A), and in (D) for an intuitive illustration on the three-way interaction in the region cluster as shown in (C). The laterality index is quantified with LL-RR and LR-RL adjusted for head motion and global mean connectivity, respectively. Dashed curves indicate the 95% confidence intervals of the linear regression of the connectivity laterality on age.

References

    1. Aboitiz F., Ide A., Navarrete A., Pena M., Rodriguez E., Wolff V., Zaidel E. The anatomical substrates for language and hemispheric specialization. Biol. Res. 1995;28:45–50.
    1. Amunts K., Armstrong E., Malikovic A., Homke L., Mohlberg H., Schleicher A., Zilles K. Gender-specific left–right asymmetries in human visual cortex. J. Neurosci. 2007;27:1356–1364.
    1. Andrews-Hanna J.R. The brain's default network and its adaptive role in internal mentation. Neuroscientist. 2012;18:251–270.
    1. Andrews-Hanna J.R., Reidler J.S., Sepulcre J., Poulin R., Buckner R.L. Functional-anatomic fractionation of the brain's default network. Neuron. 2010;65:550–562.
    1. Andrews-Hanna J.R., Smallwood J., Spreng R.N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 2014;1316:29–52.
    1. Annett M. A coordination of hand preference and skill replicated. Br. J. Psychol. 1976;67:587–592.
    1. Ashburner J., Friston K.J. Unified segmentation. Neuroimage. 2005;26:839–851.
    1. Betzel R.F., Byrge L., He Y., Goni J., Zuo X.N., Sporns O. Changes in structural and functional connectivity among resting-state networks across the human lifespan. Neuroimage. 2014;102(Pt. 2):345–357.
    1. Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995;34:537–541.
    1. Biswal B.B., Mennes M., Zuo X.N., Gohel S., Kelly C., Smith S.M., Beckmann C.F., Adelstein J.S., Buckner R.L., Colcombe S., Dogonowski A.M., Ernst M., Fair D., Hampson M., Hoptman M.J., Hyde J.S., Kiviniemi V.J., Kotter R., Li S.J., Lin C.P., Lowe M.J., Mackay C., Madden D.J., Madsen K.H., Margulies D.S., Mayberg H.S., McMahon K., Monk C.S., Mostofsky S.H., Nagel B.J., Pekar J.J., Peltier S.J., Petersen S.E., Riedl V., Rombouts S.A., Rypma B., Schlaggar B.L., Schmidt S., Seidler R.D., Siegle G.J., Sorg C., Teng G.J., Veijola J., Villringer A., Walter M., Wang L., Weng X.C., Whitfield-Gabrieli S., Williamson P., Windischberger C., Zang Y.F., Zhang H.Y., Castellanos F.X., Milham M.P. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U. S. A. 2010;107:4734–4739.
    1. Bonnelle V., Ham T.E., Leech R., Kinnunen K.M., Mehta M.A., Greenwood R.J., Sharp D.J. Salience network integrity predicts default mode network function after traumatic brain injury. Proc. Natl. Acad. Sci. U. S. A. 2012;109:4690–4695.
    1. Booth J.R., Burman D.D., Meyer J.R., Lei Z., Trommer B.L., Davenport N.D., Li W., Parrish T.B., Gitelman D.R., Mesulam M.M. Neural development of selective attention and response inhibition. Neuroimage. 2003;20:737–751.
    1. Bunge S.A., Dudukovic N.M., Thomason M.E., Vaidya C.J., Gabrieli J.D. Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron. 2002;33:301–311.
    1. Bush G., Frazier J.A., Rauch S.L., Seidman L.J., Whalen P.J., Jenike M.A., Rosen B.R., Biederman J. Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the counting stroop. Biol. Psychiatry. 1999;45:1542–1552.
    1. Bush G., Luu P., Posner M.I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 2000;4:215–222.
    1. Bush G., Valera E.M., Seidman L.J. Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol. Psychiatry. 2005;57:1273–1284.
    1. Cao X., Cao Q., Long X., Sun L., Sui M., Zhu C., Zuo X., Zang Y., Wang Y. Abnormal resting-state functional connectivity patterns of the putamen in medication-naive children with attention deficit hyperactivity disorder. Brain Res. 2009;1303:195–206.
    1. Castellanos F.X., Lee P.P., Sharp W., Jeffries N.O., Greenstein D.K., Clasen L.S., Blumenthal J.D., James R.S., Ebens C.L., Walter J.M., Zijdenbos A., Evans A.C., Giedd J.N., Rapoport J.L. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. J. Am. Med. Assoc. 2002;288:1740–1748.
    1. Castellanos F.X., Margulies D.S., Kelly C., Uddin L.Q., Ghaffari M., Kirsch A., Shaw D., Shehzad Z., Di Martino A., Biswal B., Sonuga-Barke E.J., Rotrosen J., Adler L.A., Milham M.P. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry. 2008;63:332–337.
    1. Chen P., Goedert K.M., Murray E., Kelly K., Ahmeti S., Barrett A.M. Spatial bias and right hemisphere function: sex-specific changes with aging. J. Int. Neuropsychol. Soc. 2011;17:455–462.
    1. Chiu H.C., Damasio A.R. Human cerebral asymmetries evaluated by computed tomography. J. Neurol. Neurosurg. Psychiatry. 1980;43:873–878.
    1. Cole M.W., Bassett D.S., Power J.D., Braver T.S., Petersen S.E. Intrinsic and task-evoked network architectures of the human brain. Neuron. 2014;83:238–251.
    1. Cole M.W., Repovs G., Anticevic A. The frontoparietal control system: a central role in mental health. Neuroscientist. 2014;20:652–664.
    1. Cole M.W., Reynolds J.R., Power J.D., Repovs G., Anticevic A., Braver T.S. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 2014;16:1348–1355.
    1. Corbetta M., Shulman G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002;3:201–215.
    1. Coull J.T., Nobre A.C. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J. Neurosci. 1998;18:7426–7435.
    1. Dosenbach N.U., Visscher K.M., Palmer E.D., Miezin F.M., Wenger K.K., Kang H.C., Burgund E.D., Grimes A.L., Schlaggar B.L., Petersen S.E. A core system for the implementation of task sets. Neuron. 2006;50:799–812.
    1. Durston S. A review of the biological bases of ADHD: what have we learned from imaging studies? Ment. Retard. Dev. Disabil. Res. Rev. 2003;9:184–195.
    1. Fair D.A., Dosenbach N.U., Church J.A., Cohen A.L., Brahmbhatt S., Miezin F.M., Barch D.M., Raichle M.E., Petersen S.E., Schlaggar B.L. Development of distinct control networks through segregation and integration. Proc. Natl. Acad. Sci. U. S. A. 2007;104:13507–13512.
    1. Fransson P. Spontaneous low-frequency bold signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 2005;26:15–29.
    1. Fujiwara H., Namiki C., Hirao K., Miyata J., Shimizu M., Fukuyama H., Sawamoto N., Hayashi T., Murai T. Anterior and posterior cingulum abnormalities and their association with psychopathology in schizophrenia: a diffusion tensor imaging study. Schizophr. Res. 2007;95:215–222.
    1. Gao W., Alcauter S., Smith J.K., Gilmore J.H., Lin W. Development of human brain cortical network architecture during infancy. Brain Struct. Funct. 2015;220:1173–1186.
    1. Gao W., Elton A., Zhu H., Alcauter S., Smith J.K., Gilmore J.H., Lin W. Intersubject variability of and genetic effects on the brain's functional connectivity during infancy. J. Neurosci. 2014;34:11288–11296.
    1. Gao W., Gilmore J.H., Shen D., Smith J.K., Zhu H., Lin W. The synchronization within and interaction between the default and dorsal attention networks in early infancy. Cereb. Cortex. 2013;23:594–603.
    1. Garavan H., Ross T.J., Stein E.A. Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc. Natl. Acad. Sci. U. S. A. 1999;96:8301–8306.
    1. Gogtay N., Giedd J.N., Lusk L., Hayashi K.M., Greenstein D., Vaituzis A.C., Nugent T.F., Herman D.H., Clasen L.S., Toga A.W., Rapoport J.L., Thompson P.M. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. U. S. A. 2004;101:8174–8179.
    1. Gong G., Jiang T., Zhu C., Zang Y., He Y., Xie S., Xiao J. Side and handedness effects on the cingulum from diffusion tensor imaging. Neuroreport. 2005;16:1701–1705.
    1. Gong G., Jiang T., Zhu C., Zang Y., Wang F., Xie S., Xiao J., Guo X. Asymmetry analysis of cingulum based on scale-invariant parameterization by diffusion tensor imaging. Hum. Brain Mapp. 2005;24:92–98.
    1. Gotts S.J., Jo H.J., Wallace G.L., Saad Z.S., Cox R.W., Martin A. Two distinct forms of functional lateralization in the human brain. Proc. Natl. Acad. Sci. U. S. A. 2013;110:E3435–44.
    1. Gur R.C., Richard J., Calkins M.E., Chiavacci R., Hansen J.A., Bilker W.B., Loughead J., Connolly J.J., Qiu H., Mentch F.D., Abou-Sleiman P.M., Hakonarson H., Gur R.E. Age group and sex differences in performance on a computerized neurocognitive battery in children age 8–21. Neuropsychology. 2012;26:251–265.
    1. Hausmann M., Gunturkun O., Corballis M. Age-related changes in hemispheric asymmetry depend on sex. Laterality. 2003;8:277–290.
    1. Hiscock M., Inch R., Jacek C., Hiscock-Kalil C., Kalil K.M. Is there a sex difference in human laterality? I. An exhaustive survey of auditory laterality studies from six neuropsychology journals. J. Clin. Exp. Neuropsychol. 1994;16:423–435.
    1. Holland S.K., Plante E., Weber Byars A., Strawsburg R.H., Schmithorst V.J., Ball W. Normal fMRI brain activation patterns in children performing a verb generation task. Neuroimage. 2001;14:837–843.
    1. Hougaard A., Jensen B.H., Amin F.M., Rostrup E., Hoffmann M.B., Ashina M. Cerebral asymmetry of fMRI-BOLD responses to visual stimulation. PLOS ONE. 2015;10:e0126477.
    1. Huster R.J., Westerhausen R., Kreuder F., Schweiger E., Wittling W. Morphologic asymmetry of the human anterior cingulate cortex. Neuroimage. 2007;34:888–895.
    1. Huster R.J., Westerhausen R., Kreuder F., Schweiger E., Wittling W. Hemispheric and gender related differences in the midcingulum bundle: a DTI study. Hum. Brain Mapp. 2009;30:383–391.
    1. Kelly A.M., Uddin L.Q., Biswal B.B., Castellanos F.X., Milham M.P. Competition between functional brain networks mediates behavioral variability. Neuroimage. 2008;39:527–537.
    1. Kelly C., de Zubicaray G., Di Martino A., Copland D.A., Reiss P.T., Klein D.F., Castellanos F.X., Milham M.P., McMahon K. L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J. Neurosci. 2009;29:7364–7378.
    1. Kubicki M., Westin C.F., Nestor P.G., Wible C.G., Frumin M., Maier S.E., Kikinis R., Jolesz F.A., McCarley R.W., Shenton M.E. Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study. Biol. Psychiatry. 2003;54:1171–1180.
    1. LeMay M. Asymmetries of the skull and handedness. phrenology revisited. J. Neurol. Sci. 1977;32:243–253.
    1. Liu H., Stufflebeam S.M., Sepulcre J., Hedden T., Buckner R.L. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proc. Natl. Acad. Sci. U. S. A. 2009;106:20499–20503.
    1. Lowe M.J., Mock B.J., Sorenson J.A. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage. 1998;7:119–132.
    1. Luders E., Gaser C., Jancke L., Schlaug G. A voxel-based approach to gray matter asymmetries. Neuroimage. 2004;22:656–664.
    1. Margulies D.S., Kelly A.M., Uddin L.Q., Biswal B.B., Castellanos F.X., Milham M.P. Mapping the functional connectivity of anterior cingulate cortex. Neuroimage. 2007;37:579–588.
    1. Menon V., Uddin L.Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 2010;214:655–667.
    1. Moses P., Roe K., Buxton R.B., Wong E.C., Frank L.R., Stiles J. Functional MRI of global and local processing in children. Neuroimage. 2002;16:415–424.
    1. Muftuler L.T., Davis E.P., Buss C., Head K., Hasso A.N., Sandman C.A. Cortical and subcortical changes in typically developing preadolescent children. Brain Res. 2011;1399:15–24.
    1. Nielsen J.A., Zielinski B.A., Ferguson M.A., Lainhart J.E., Anderson J.S. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging. PLoS ONE. 2013;8:e71275.
    1. O’Donnell L.J., Westin C.F., Golby A.J. Tract-based morphometry for white matter group analysis. Neuroimage. 2009;45:832–844.
    1. Park H.J., Westin C.F., Kubicki M., Maier S.E., Niznikiewicz M., Baer A., Frumin M., Kikinis R., Jolesz F.A., McCarley R.W., Shenton M.E. White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study. Neuroimage. 2004;23:213–223.
    1. Paus T., Otaky N., Caramanos Z., MacDonald D., Zijdenbos A., D’Avirro D., Gutmans D., Holmes C., Tomaiuolo F., Evans A.C. In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior-rostral sulci: hemispheric asymmetries, gender differences and probability maps. J. Comp. Neurol. 1996;376:664–673.
    1. Power J.D., Barnes K.A., Snyder A.Z., Schlaggar B.L., Petersen S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–2154.
    1. Power J.D., Petersen S.E. Control-related systems in the human brain. Curr. Opin. Neurobiol. 2013;23:223–228.
    1. Raichle M.E. The brain's default mode network. Annu. Rev. Neurosci. 2015;38:433–447.
    1. Rubia K., Overmeyer S., Taylor E., Brammer M., Williams S.C., Simmons A., Bullmore E.T. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am. J. Psychiatry. 1999;156:891–896.
    1. Rushworth M.F., Buckley M.J., Behrens T.E., Walton M.E., Bannerman D.M. Functional organization of the medial frontal cortex. Curr. Opin. Neurobiol. 2007;17:220–227.
    1. Satterthwaite T.D., Wolf D.H., Ruparel K., Erus G., Elliott M.A., Eickhoff S.B., Gennatas E.D., Jackson C., Prabhakaran K., Smith A., Hakonarson H., Verma R., Davatzikos C., Gur R.E., Gur R.C. Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth. Neuroimage. 2013;83:45–57.
    1. Seeley W.W., Menon V., Schatzberg A.F., Keller J., Glover G.H., Kenna H., Reiss A.L., Greicius M.D. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007;27:2349–2356.
    1. Seldon H.L. Does brain white matter growth expand the cortex like a balloon? Hypothesis and consequences. Laterality. 2005;10:81–95.
    1. Shenhav A., Botvinick M.M., Cohen J.D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron. 2013;79:217–240.
    1. Smith W.M. Hemispheric and facial asymmetry: gender differences. Laterality. 2000;5:251–258.
    1. Song X.W., Dong Z.Y., Long X.Y., Li S.F., Zuo X.N., Zhu C.Z., He Y., Yan C.G., Zang Y.F. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE. 2011;6:e25031.
    1. Sowell E.R., Peterson B.S., Thompson P.M., Welcome S.E., Henkenius A.L., Toga A.W. Mapping cortical change across the human life span. Nat. Neurosci. 2003;6:309–315.
    1. Sowell E.R., Thompson P.M., Leonard C.M., Welcome S.E., Kan E., Toga A.W. Longitudinal mapping of cortical thickness and brain growth in normal children. J. Neurosci. 2004;24:8223–8231.
    1. Sowell E.R., Thompson P.M., Tessner K.D., Toga A.W. Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J. Neurosci. 2001;21:8819–8829.
    1. Sridharan D., Levitin D.J., Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. U. S. A. 2008;105:12569–12574.
    1. Stephan K.E., Marshall J.C., Friston K.J., Rowe J.B., Ritzl A., Zilles K., Fink G.R. Lateralized cognitive processes and lateralized task control in the human brain. Science. 2003;301:384–386.
    1. Szaflarski J.P., Holland S.K., Schmithorst V.J., Byars A.W. fMRI study of language lateralization in children and adults. Hum. Brain Mapp. 2006;27:202–212.
    1. Takao H., Hayashi N., Ohtomo K. White matter asymmetry in healthy individuals: a diffusion tensor imaging study using tract-based spatial statistics. Neuroscience. 2011;193:291–299.
    1. Takei K., Yamasue H., Abe O., Yamada H., Inoue H., Suga M., Muroi M., Sasaki H., Aoki S., Kasai K. Structural disruption of the dorsal cingulum bundle is associated with impaired stroop performance in patients with schizophrenia. Schizophr. Res. 2009;114:119–127.
    1. Tamm L., Menon V., Ringel J., Reiss A.L. Event-related fMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry. 2004;43:1430–1440.
    1. Tian L., Jiang T., Wang Y., Zang Y., He Y., Liang M., Sui M., Cao Q., Hu S., Peng M., Zhuo Y. Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci. Lett. 2006;400:39–43.
    1. Toga A.W., Thompson P.M. Mapping brain asymmetry. Nat. Rev. Neurosci. 2003;4:37–48.
    1. Tomasi D., Volkow N.D. Laterality patterns of brain functional connectivity: gender effects. Cereb. Cortex. 2012;22:1455–1462.
    1. Van Essen D.C., Glasser M.F., Dierker D.L., Harwell J., Coalson T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex. 2012;22:2241–2262.
    1. Wang J., Liu D.Q., Zhang H., Zhu W.X., Dong Z.Y., Zang Y.F. Asymmetry of the dorsal anterior cingulate cortex: evidences from multiple modalities of MRI. Neuroinformatics. 2013;11:149–157.
    1. Xu T., Yang Z., Jang L.L., Xing X.X., Zuo X.N. A connectome computation system for discovery science of brain. Sci. Bull. 2015;60:86–95.
    1. Yaakoby-Rotem S., Geva R. Asymmetric attention networks: the case of children. J. Int. Neuropsychol. Soc. 2014;20:434–443.
    1. Yan C.G., Cheung B., Kelly C., Colcombe S., Craddock R.C., Di Martino A., Li Q., Zuo X.N., Castellanos F.X., Milham M.P. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage. 2013;76:183–201.
    1. Yan C.G., Craddock R.C., Zuo X.N., Zang Y.F., Milham M.P. Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage. 2013;80:246–262.
    1. Yan C.G., Zang Y. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 2010;4:13.
    1. Yan H., Zuo X.N., Wang D., Wang J., Zhu C., Milham M.P., Zhang D., Zang Y. Hemispheric asymmetry in cognitive division of anterior cingulate cortex: a resting-state functional connectivity study. Neuroimage. 2009;47:1579–1589.
    1. Yang H., Wu Q.Z., Guo L.T., Li Q.Q., Long X.Y., Huang X.Q., Chan R.C., Gong Q.Y. Abnormal spontaneous brain activity in medication-naive ADHD children: a resting state fMRI study. Neurosci. Lett. 2011;502:89–93.
    1. Yeo B.T., Krienen F.M., Sepulcre J., Sabuncu M.R., Lashkari D., Hollinshead M., Roffman J.L., Smoller J.W., Zollei L., Polimeni J.R., Fischl B., Liu H., Buckner R.L. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011;106:1125–1165.
    1. Zang Y.F., He Y., Zhu C.Z., Cao Q.J., Sui M.Q., Liang M., Tian L.X., Jiang T.Z., Wang Y.F. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29:83–91.
    1. Zetzsche T., Meisenzahl E.M., Preuss U.W., Holder J.J., Kathmann N., Leinsinger G., Hahn K., Hegerl U., Moller H.J. In-vivo analysis of the human planum temporale (PT): does the definition of PT borders influence the results with regard to cerebral asymmetry and correlation with handedness? Psychiatry Res. 2001;107:99–115.
    1. Zuo X.N., Anderson J.S., Bellec P., Birn R.M., Biswal B.B., Blautzik J., Breitner J.C., Buckner R.L., Calhoun V.D., Castellanos F.X., Chen A., Chen B., Chen J., Chen X., Colcombe S.J., Courtney W., Craddock R.C., Di Martino A., Dong H.M., Fu X., Gong Q., Gorgolewski K.J., Han Y., He Y., He Y., Ho E., Holmes A., Hou X.H., Huckins J., Jiang T., Jiang Y., Kelley W., Kelly C., King M., LaConte S.M., Lainhart J.E., Lei X., Li H.J., Li K., Li K., Lin Q., Liu D., Liu J., Liu X., Liu Y., Lu G., Lu J., Luna B., Luo J., Lurie D., Mao Y., Margulies D.S., Mayer A.R., Meindl T., Meyerand M.E., Nan W., Nielsen J.A., O’Connor D., Paulsen D., Prabhakaran V., Qi Z., Qiu J., Shao C., Shehzad Z., Tang W., Villringer A., Wang H., Wang K., Wei D., Wei G.X., Weng X.C., Wu X., Xu T., Yang N., Yang Z., Zang Y.F., Zhang L., Zhang Q., Zhang Z., Zhang Z., Zhao K., Zhen Z., Zhou Y., Zhu X.T., Milham M.P. An open science resource for establishing reliability and reproducibility in functional connectomics. Sci. Data. 2014;1:140049.
    1. Zuo X.N., Kelly C., Di Martino A., Mennes M., Margulies D.S., Bangaru S., Grzadzinski R., Evans A.C., Zang Y.F., Castellanos F.X., Milham M.P. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J. Neurosci. 2010;30:15034–15043.
    1. Zuo X.N., Xing X.X. Test–retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci. Biobehav. Rev. 2014;45:100–118.

Source: PubMed

3
Sottoscrivi