Costoclavicular brachial plexus block reduces hemidiaphragmatic paralysis more than supraclavicular brachial plexus block: retrospective, propensity score matched cohort study

Chahyun Oh, Chan Noh, Hongsik Eom, Sangmin Lee, Seyeon Park, Sunyeul Lee, Yong Sup Shin, Youngkwon Ko, Woosuk Chung, Boohwi Hong, Chahyun Oh, Chan Noh, Hongsik Eom, Sangmin Lee, Seyeon Park, Sunyeul Lee, Yong Sup Shin, Youngkwon Ko, Woosuk Chung, Boohwi Hong

Abstract

Background: Hemidiaphragmatic paralysis, a frequent complication of the brachial plexus block performed above the clavicle, is rarely associated with an infraclavicular approach. The costoclavicular brachial plexus block is emerging as a promising infraclavicular approach. However, it may increase the risk of hemidiaphragmatic paralysis because the proximity to the phrenic nerve is greater than in the classical infraclavicular approach.

Methods: This retrospective analysis compared the incidence of hemidiaphragmatic paralysis in patients undergoing costoclavicular and supraclavicular brachial plexus blocks. Of 315 patients who underwent brachial plexus block performed by a single anesthesiologist, 118 underwent costoclavicular, and 197 underwent supraclavicular brachial plexus block. Propensity score matching selected 118 pairs of patients. The primary outcome was the incidence of hemidiaphragmatic paralysis, defined as a postoperative elevation of the hemidiaphragm > 20 mm. Factors affecting the incidence of hemidiaphragmatic paralysis were also evaluated.

Results: Hemidiaphragmatic paralysis was observed in three patients (2.5%) who underwent costoclavicular and 47 (39.8%) who underwent supraclavicular brachial plexus blocks (P < 0.001; odds ratio, 0.04; 95% confidence interval, 0.01-0.13). Both the brachial plexus block approach and the injected volume of local anesthetic were significantly associated with hemidiaphragmatic paralysis.

Conclusions: The incidence of hemidiaphragmatic paralysis is significantly lower with costoclavicular than with supraclavicular brachial plexus block.

Keywords: Anesthesia; Brachial Plexus Block; Diaphragm; Incidence; Nerve Block; Paralysis; Phrenic Nerve; Propensity Score; Retrospective Studies; Ultrasonography.

Conflict of interest statement

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

Figures

Fig. 1
Fig. 1
Sonographic view of a brachial plexus in the costoclavicular space (A, B) and the supraclavicular region (C). (A) A block needle was inserted in-plane in a lateral to medial direction, followed by initial injection of local anesthetic between the medial and posterior cords. (B) The needle was relocated adjacent to the lateral cord, followed by injection of additional anesthetic. (C) Initial injection of local anesthetic into the corner pocket, defined as the intersection between the first rib and the subclavian artery. Subsequent injection after relocation of the needle toward the neural cluster is not shown. AA: axillary artery, LC: lateral cord, MC: medial cord, PC: posterior cord, SA: subclavian artery, LA: local anesthetic, NC: neural cluster.
Fig. 2
Fig. 2
Height measurement in a patient with right-sided hemidiaphragmatic paralysis on pre-operative (left) and postoperative (right) images. The vertical distance between the two lines (parallel to the vertebral body and passing through the highest points of each hemidiaphragm) was measured. The height of the right hemidiaphragm was determined relative to the height of the left hemidiaphragm, set at 0 mm. The difference between pre- and post-operative heights was calculated as postoperative height (D2) – preoperative height (D1).
Fig. 3
Fig. 3
Flow diagram of patient selection and propensity score matching.
Fig. 4
Fig. 4
Histogram showing changes in height of the hemidiaphragm. The dashed line indicates the cut off value for hemidiaphragmatic paralysis. CCB: costoclavicular brachial plexus block, SCB: supraclavicular brachial plexus block.

References

    1. Kang RA, Chung YH, Ko JS, Yang MK, Choi DH. Reduced hemidiaphragmatic paresis with a “corner pocket” technique for supraclavicular brachial plexus block: single-center, observer-blinded, randomized controlled trial. Reg Anesth Pain Med. 2018;43:720–4. doi: 10.1097/AAP.0000000000000795.
    1. Mak PH, Irwin MG, Ooi CG, Chow BF. Incidence of diaphragmatic paralysis following supraclavicular brachial plexus block and its effect on pulmonary function. Anaesthesia. 2001;56:352–6. doi: 10.1046/j.1365-2044.2001.01708-2.x.
    1. Riazi S, Carmichael N, Awad I, Holtby RM, McCartney CJ. Effect of local anaesthetic volume (20 vs 5 ml) on the efficacy and respiratory consequences of ultrasound-guided interscalene brachial plexus block. Br J Anaesth. 2008;101:549–56. doi: 10.1093/bja/aen229.
    1. Sinha SK, Abrams JH, Barnett JT, Muller JG, Lahiri B, Bernstein BA, et al. Decreasing the local anesthetic volume from 20 to 10 mL for ultrasound-guided interscalene block at the cricoid level does not reduce the incidence of hemidiaphragmatic paresis. Reg Anesth Pain Med. 2011;36:17–20. doi: 10.1097/AAP.0b013e3182030648.
    1. Stundner O, Meissnitzer M, Brummett CM, Moser S, Forstner R, Koköfer A, et al. Comparison of tissue distribution, phrenic nerve involvement, and epidural spread in standard- vs low-volume ultrasound-guided interscalene plexus block using contrast magnetic resonance imaging: a randomized, controlled trial. Br J Anaesth. 2016;116:405–12. doi: 10.1093/bja/aev550.
    1. Lee JH, Cho SH, Kim SH, Chae WS, Jin HC, Lee JS, et al. Ropivacaine for ultrasound-guided interscalene block: 5 mL provides similar analgesia but less phrenic nerve paralysis than 10 mL. Can J Anaesth. 2011;58:1001–6. doi: 10.1007/s12630-011-9568-5.
    1. Ryu TH, Jeon YH, Lim DG. Postoperative analgesia in dyspneic patient after interscalene brachial plexus block with general anesthesia: a case report. J Korean Pain Soc. 2004;17:266–70. doi: 10.3344/jkps.2004.17.2.266.
    1. Renes SH, Spoormans HH, Gielen MJ, Rettig HC, van Geffen GJ. Hemidiaphragmatic paresis can be avoided in ultrasound-guided supraclavicular brachial plexus block. Reg Anesth Pain Med. 2009;34:595–9. doi: 10.1097/AAP.0b013e3181bfbd83.
    1. Urmey WF, McDonald M. Hemidiaphragmatic paresis during interscalene brachial plexus block: effects on pulmonary function and chest wall mechanics. Anesth Analg. 1992;74:352–7. doi: 10.1213/00000539-199203000-00006.
    1. Sotthisopha T, Elgueta MF, Samerchua A, Leurcharusmee P, Tiyaprasertkul W, Gordon A, et al. Minimum effective volume of lidocaine for ultrasound-guided costoclavicular block. Reg Anesth Pain Med. 2017;42:571–4. doi: 10.1097/AAP.0000000000000629.
    1. Rose M, Ness TJ. Hypoxia following interscalene block. Reg Anesth Pain Med. 2002;27:94–6. doi: 10.1053/rapm.2002.29709.
    1. Erickson JM, Louis DS, Naughton NN. Symptomatic phrenic nerve palsy after supraclavicular block in an obese man. Orthopedics. 2009;32:368. doi: 10.3928/01477447-20090501-02.
    1. Gentili ME, Deleuze A, Estèbe JP, Lebourg M, Ecoffey C. Severe respiratory failure after infraclavicular block with 0.75% ropivacaine: a case report. J Clin Anesth. 2002;14:459–61. doi: 10.1016/S0952-8180(02)00387-2.
    1. Petrar SD, Seltenrich ME, Head SJ, Schwarz SK. Hemidiaphragmatic paralysis following ultrasound-guided supraclavicular versus infraclavicular brachial plexus blockade: a randomized clinical trial. Reg Anesth Pain Med. 2015;40:133–8. doi: 10.1097/AAP.0000000000000215.
    1. Dullenkopf A, Blumenthal S, Theodorou P, Roos J, Perschak H, Borgeat A. Diaphragmatic excursion and respiratory function after the modified Raj technique of the infraclavicular plexus block. Reg Anesth Pain Med. 2004;29:110–4. doi: 10.1097/00115550-200403000-00008.
    1. Rodríguez J, Bárcena M, Alvarez J. Restricted infraclavicular distribution of the local anesthetic solution after infraclavicular brachial plexus block. Reg Anesth Pain Med. 2003;28:33–6. doi: 10.1097/00115550-200301000-00007.
    1. Kessler J, Schafhalter-Zoppoth I, Gray AT. An ultrasound study of the phrenic nerve in the posterior cervical triangle: implications for the interscalene brachial plexus block. Reg Anesth Pain Med. 2008;33:545–50. doi: 10.1097/00115550-200811000-00006.
    1. Songthamwat B, Karmakar MK, Li JW, Samy W, Mok LYH. Ultrasound-guided infraclavicular brachial plexus block: prospective randomized comparison of the lateral sagittal and costoclavicular approach. Reg Anesth Pain Med. 2018;43:825–31. doi: 10.1097/AAP.0000000000000822.
    1. Li JW, Songthamwat B, Samy W, Sala-Blanch X, Karmakar MK. Ultrasound-guided costoclavicular brachial plexus block: sonoanatomy, technique, and block dynamics. Reg Anesth Pain Med. 2017;42:233–40. doi: 10.1097/AAP.0000000000000566.
    1. Karmakar MK, Sala-Blanch X, Songthamwat B, Tsui BC. Benefits of the costoclavicular space for ultrasound-guided infraclavicular brachial plexus block: description of a costoclavicular approach. Reg Anesth Pain Med. 2015;40:287–8. doi: 10.1097/AAP.0000000000000232.
    1. Sala-Blanch X, Reina MA, Pangthipampai P, Karmakar MK. Anatomic basis for brachial plexus block at the costoclavicular space: a cadaver anatomic study. Reg Anesth Pain Med. 2016;41:387–91. doi: 10.1097/AAP.0000000000000393.
    1. Aliste J, Bravo D, Layera S, Fernández D, Jara Á, Maccioni C, et al. Randomized comparison between interscalene and costoclavicular blocks for arthroscopic shoulder surgery. Reg Anesth Pain Med. 2019 doi: 10.1136/rapm-2018-100055. doi: 10.1136/rapm-2018-100055.
    1. García-Vitoria C, Vizuete J, López Navarro AM, Bosch M. Costoclavicular space: a reliable gate for continuous regional anesthesia catheter insertion. Anesthesiology. 2017;127:712. doi: 10.1097/ALN.0000000000001724.
    1. Nieuwveld D, Mojica V, Herrera AE, Pomés J, Prats A, Sala-Blanch X. Medial approach of ultrasound-guided costoclavicular plexus block and its effects on regional perfussion. Rev Esp Anestesiol Reanim. 2017;64:198–205. doi: 10.1016/j.redar.2016.09.010.
    1. Soares LG, Brull R, Lai J, Chan VW. Eight ball, corner pocket: the optimal needle position for ultrasound-guided supraclavicular block. Reg Anesth Pain Med. 2007;32:94–5. doi: 10.1097/00115550-200701000-00019.
    1. Lee DK. An introduction to propensity score matching methods. Anesth Pain Med. 2016;11:130–48. doi: 10.17085/apm.2016.11.2.130.
    1. Ho D, Imai K, King G, Stuart EA. MatchIt: nonparametric preprocessing for parametric causal inference. J Stat Softw. 2011;42:28. doi: 10.18637/jss.v042.i08.
    1. Albrecht E, Bathory I, Fournier N, Jacot-Guillarmod A, Farron A, Brull R. Reduced hemidiaphragmatic paresis with extrafascial compared with conventional intrafascial tip placement for continuous interscalene brachial plexus block: a randomized, controlled, double-blind trial. Br J Anaesth. 2017;118:586–92. doi: 10.1093/bja/aex050.
    1. Tran DQ, Elgueta MF, Aliste J, Finlayson RJ. Diaphragm-sparing nerve blocks for shoulder surgery. Reg Anesth Pain Med. 2017;42:32–8. doi: 10.1097/AAP.0000000000000529.
    1. Leurcharusmee P, Elgueta MF, Tiyaprasertkul W, Sotthisopha T, Samerchua A, Gordon A, et al. A randomized comparison between costoclavicular and paracoracoid ultrasound-guided infraclavicular block for upper limb surgery. Can J Anaesth. 2017;64:617–25. doi: 10.1007/s12630-017-0842-z.
    1. El-Boghdadly K, Chin KJ, Chan VWS. Phrenic nerve palsy and regional anesthesia for shoulder surgery: anatomical, physiologic, and clinical considerations. Anesthesiology. 2017;127:173–91. doi: 10.1097/ALN.0000000000001668.
    1. Aliste J, Bravo D, Fernández D, Layera S, Finlayson RJ, Tran DQ. A randomized comparison between interscalene and small-volume supraclavicular blocks for arthroscopic shoulder surgery. Reg Anesth Pain Med. 2018;43:590–5. doi: 10.1097/AAP.0000000000000767.
    1. Demondion X, Herbinet P, Boutry N, Fontaine C, Francke JP, Cotten A. Sonographic mapping of the normal brachial plexus. AJNR Am J Neuroradiol. 2003;24:1303–9.
    1. Morimoto M, Popovic J, Kim JT, Kiamzon H, Rosenberg AD. Case series: septa can influence local anesthetic spread during infraclavicular brachial plexus blocks. Can J Anaesth. 2007;54:1006–10. doi: 10.1007/BF03016635.
    1. Brenner D, Mahon P, Iohom G, Cronin M, O’Flynn C, Shorten G. Fascial layers influence the spread of injectate during ultrasound-guided infraclavicular brachial plexus block: a cadaver study. Br J Anaesth. 2018;121:876–82. doi: 10.1016/j.bja.2018.04.043.
    1. Monzó E, Hadzic A. Costoclavicular approach to the brachial plexus block: simple or double injection? Reg Anesth Pain Med. 2019 doi: 10.1136/rapm-2019-100852. doi: 10.1136/rapm-2019-100852.
    1. Scott S, Fuld JP, Carter R, McEntegart M, MacFarlane NG. Diaphragm ultrasonography as an alternative to whole-body plethysmography in pulmonary function testing. J Ultrasound Med. 2006;25:225–32. doi: 10.7863/jum.2006.25.2.225.
    1. Boussuges A, Gole Y, Blanc P. Diaphragmatic motion studied by m-mode ultrasonography: methods, reproducibility, and normal values. Chest. 2009;135:391–400. doi: 10.1378/chest.08-1541.
    1. Testa A, Soldati G, Giannuzzi R, Berardi S, Portale G, Gentiloni Silveri N. Ultrasound M-mode assessment of diaphragmatic kinetics by anterior transverse scanning in healthy subjects. Ultrasound Med Biol. 2011;37:44–52. doi: 10.1016/j.ultrasmedbio.2010.10.004.
    1. Wade OL, Gilson JC. The effect of posture on diaphragmatic movement and vital capacity in normal subjects with a note on spirometry as an aid in determining radiological chest volumes. Thorax. 1951;6:103–26. doi: 10.1136/thx.6.2.103.
    1. Wade OL. Movements of the thoracic cage and diaphragm in respiration. J Physiol. 1954;124:193–212. doi: 10.1113/jphysiol.1954.sp005099.
    1. Alexander C. Diaphragm movements and the diagnosis of diaphragmatic paralysis. Clin Radiol. 1966;17:79–83. doi: 10.1016/S0009-9260(66)80128-9.
    1. Chetta A, Rehman AK, Moxham J, Carr DH, Polkey MI. Chest radiography cannot predict diaphragm function. Respir Med. 2005;99:39–44. doi: 10.1016/j.rmed.2004.04.016.
    1. Lim CY, In J. Randomization in clinical studies. Korean J Anesthesiol. 2019;72:221–32. doi: 10.4097/kja.19049.

Source: PubMed

3
Sottoscrivi