A Review of Mushrooms as a Potential Source of Dietary Vitamin D

Glenn Cardwell, Janet F Bornman, Anthony P James, Lucinda J Black, Glenn Cardwell, Janet F Bornman, Anthony P James, Lucinda J Black

Abstract

When commonly consumed mushroom species are exposed to a source of ultraviolet (UV) radiation, such as sunlight or a UV lamp, they can generate nutritionally relevant amounts of vitamin D. The most common form of vitamin D in mushrooms is D₂, with lesser amounts of vitamins D₃ and D₄, while vitamin D₃ is the most common form in animal foods. Although the levels of vitamin D₂ in UV-exposed mushrooms may decrease with storage and cooking, if they are consumed before the 'best-before' date, vitamin D₂ level is likely to remain above 10 μg/100 g fresh weight, which is higher than the level in most vitamin D-containing foods and similar to the daily requirement of vitamin D recommended internationally. Worldwide mushroom consumption has increased markedly in the past four decades, and mushrooms have the potential to be the only non-animal, unfortified food source of vitamin D that can provide a substantial amount of vitamin D₂ in a single serve. This review examines the current information on the role of UV radiation in enhancing the concentration of vitamin D₂ in mushrooms, the effects of storage and cooking on vitamin D₂ content, and the bioavailability of vitamin D₂ from mushrooms.

Keywords: Agaricus bisporus; Lentinula edodes; Pleurotus ostreatus; UV radiation; button mushroom; mushroom; oyster mushroom; shiitake mushroom; vitamin D.

Conflict of interest statement

The authors declare no conflict of interest. G.C. worked as a consultant to the Australian mushroom industry prior to September 2017.

Figures

Figure 1
Figure 1
Structures of vitamin D2, D3, D4, and their precursors. UV, ultraviolet radiation.

References

    1. Jones G. Vitamin D. Modern Nutrition in Health and Disease. 11 ed. Wolters Kluwer Health; Baltimore, MD, USA: 2014.
    1. Lips P. Vitamin D physiology. Prog. Biophys. Mol. Biol. 2006;92:4–8. doi: 10.1016/j.pbiomolbio.2006.02.016.
    1. Girgis C.M., Clifton-Bligh R.J., Hamrick M.W., Holick M.F., Gunton J.E. The roles of vitamin D in skeletal muscle: Form, function, and metabolism. Endocr. Rev. 2013;34:33–83. doi: 10.1210/er.2012-1012.
    1. Hossein-nezhad A., Holick M.F. Vitamin D for health: A global perspective. Mayo Clin. Proc. 2013;88:720–755. doi: 10.1016/j.mayocp.2013.05.011.
    1. Ford J.A., MacLennan G.S., Avenell A., Bolland M., Grey A., Witham M., Group R.T. Cardiovascular disease and vitamin D supplementation: Trial analysis, systematic review, and meta-analysis. Am. J. Clin. Nutr. 2014;100:746–755. doi: 10.3945/ajcn.113.082602.
    1. Koduah P., Paul F., Dörr J. Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases. EPMA J. 2017;8:313–325. doi: 10.1007/s13167-017-0120-8.
    1. Gaksch M., Jorde R., Grimnes G., Joakimsen R., Schirmer H., Wilsgaard T., Methiesen E.B., Njølstad I., Løchen M., März W., et al. Vitamin D and mortality: Individual participant data meta-analysis of standardized 25-hydroxyvitamin D in 26916 individuals from a European consortium. PLoS ONE. 2017;12:e0170791. doi: 10.1371/journal.pone.0170791.
    1. Theodoratou E., Tzoulaki I., Zgaga L., Ioannidis J.P.A. Vitamin D and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ. 2014;348:g2035. doi: 10.1136/bmj.g2035.
    1. Phillips K.M., Horst R.L., Koszewski N.J., Simon R.R. Vitamin D4 in mushrooms. PLoS ONE. 2012;7:e40702. doi: 10.1371/journal.pone.0040702.
    1. Keegan R.J., Lu Z., Bogusz J.M., Williams J.E., Holick M.F. Photobiology of vitamin D in mushrooms and its bioavailability in humans. Dermatoendocrinology. 2013;5:165–176. doi: 10.4161/derm.23321.
    1. Urbain P., Valverde J., Jakobsen J. Impact on vitamin D2, vitamin D4 and agaritine in Agaricus bisporus mushrooms after artificial and natural solar UV light exposure. Plant Food Hum. Nutr. 2016;71:314–321. doi: 10.1007/s11130-016-0562-5.
    1. Taofiq O., Fernandes A., Barros L., Barreiro M.F., Ferreira I.C.F.R. UV-irradiated mushrooms as a source of vitamin D2: A review. Trends Food Sci. Technol. 2017;70:82–94. doi: 10.1016/j.tifs.2017.10.008.
    1. Calvo M.S., Whiting S.J., Barton C.N. Vitamin D intake: A global perspective of current status. J. Nutr. 2005;135:310–316. doi: 10.1093/jn/135.2.310.
    1. Lamberg-Allardt C.J.E. Vitamin D in foods and as supplements. Prog. Biophys. Mol. Biol. 2006;92:33–38. doi: 10.1016/j.pbiomolbio.2006.02.017.
    1. Mau J.L., Chen P.R., Yang J.H. Ultraviolet irradiation increased vitamin D2 content in edible mushrooms. J. Agric. Food Chem. 1998;46:5269–5272. doi: 10.1021/jf980602q.
    1. Nölle N., Argyropoulos D., Ambacher S., Muller J., Biesalski H.K. Vitamin D2 enrichment in mushrooms by natural or artificial UV-light during drying. Food Sci. Technol. 2016;85:400–404.
    1. Simon R.R., Phillips K.M., Horst R.L., Munro I.C. Vitamin D mushrooms: Comparison of the composition of button mushrooms (Agaricus bisporus) treated post-harvest with UVB light or sunlight. J. Agric. Food Chem. 2011;59:8724–8732. doi: 10.1021/jf201255b.
    1. Royse D.J. A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia & Flammulina; Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8); New Delhi, India. 19–22 November 2014.
    1. Nutrient Reference Values for Australia and New Zealand. National Health and Medical Research Council, Commonwealth of Australia; Canberra, Australia: 2006.
    1. Dietary Reference Intakes for Calcium and Vitamin D. Institute of Medicine, The National Academies Press; Washington, DC, USA: 2011.
    1. Dietary Reference Values for Nutrients: Summary Report. European Food Safety Authority; Parma, Italy: 2017.
    1. Dietary Reference Intakes. [(accessed on 11 October 2018)]; Available online: .
    1. Vitamin D and Health. Scientific Advisory Committee on Nutrition, The Stationary Office; London, UK: 2016.
    1. Bailey R.L., Dodd K.W., Goldman J.A., Gahche J.J., Dwyer J.T., Moshfegh A.J., Sempos C.T., Picciano M.F. Estimation of total usual calcium and vitamin D intakes in the United States. J. Nutr. 2010;140:817–822. doi: 10.3945/jn.109.118539.
    1. Vatanparast H., Calvo M.S., Green T.J., Whiting S.J. Despite mandatory fortification of staple foods, vitamin D intakes of Canadian children and adults are inadequate. J. Steroid Biochem. Mol. Biol. 2010;121:301–303. doi: 10.1016/j.jsbmb.2010.03.079.
    1. Black L.J., Walton J., Flynn A., Cashman K.D., Kiely M. Small increments in vitamin D intake by Irish adults over a decade show that strategic initiatives to fortify the food supply are needed. J. Nutr. 2015;145:969–976. doi: 10.3945/jn.114.209106.
    1. Shrapnel W., Truswell S. Vitamin D deficiency in Australia and New Zealand: What are the dietary options? Nutr. Diet. 2006;63:206–212. doi: 10.1111/j.1747-0080.2006.00080.x.
    1. Liu J., Arcot J., Cunningham J., Greenfield H., Hsu J., Padula D., Strobel N., Fraser D.R. New data for vitamin D in australian foods of animal origin: Impact on estimates of national adult vitamin D intakes in 1995 and 2011–13. Asia Pac. J. Clin. Nutr. 2015;24:464–471.
    1. Margulis L., Chapman M.J. Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth. Academic Press; Cambridge, MA, USA: 2010.
    1. Weete J.D., Abril M., Blackwell M. Phylogenetic distribution of fungal sterols. PLoS ONE. 2010;5:e10899. doi: 10.1371/journal.pone.0010899.
    1. Quackenbush F.W., Peterson W.H., Steenbock H. A study of the nutritive value of mushrooms. J. Nutr. 1935;10:625–643. doi: 10.1093/jn/10.6.625.
    1. Jasinghe V.J., Perera C.O., Sablini S.S. Kinetics of the conversion of ergosterol in edible mushrooms. J. Food Eng. 2007;79:864–869. doi: 10.1016/j.jfoodeng.2006.01.085.
    1. Mattila P.H., Piironen V.I., Uusi-Rauva E.J., Koivistoinen P.E. Vitamin D contents in edible mushrooms. J. Agric. Food Chem. 1994;42:2449–2453. doi: 10.1021/jf00047a016.
    1. Teichmann A., Dutta P.C., Staffas A., Jägerstad M. Sterol and vitamin D2 concentrations in cultivated and wild grown mushrooms: Effects of UV irradiation. LWT-Food Sci. Technol. 2007;40:815–822. doi: 10.1016/j.lwt.2006.04.003.
    1. Kristensen H.L., Rosenqvist E., Jakobsen J. Increase of vitamin D2 by UV-B exposure during the growth phase of white button mushroom (Agaricus bisporus) Food Nutr. Res. 2012;56:7114. doi: 10.3402/fnr.v56i0.7114.
    1. Koyyalamudi S.R., Jeong S.C., Song C.H., Cho K.Y., Pang G. Vitamin D2 formation and bioavailability from Agaricus bisporus button mushrooms treated with ultraviolet irradiation. J. Agric. Food Chem. 2009;57:3351–3355. doi: 10.1021/jf803908q.
    1. Phillips K.M., Ruggio D.M., Horst R.L., Minor B., Simon R.R., Feeney M.J., Byrdwell W.C., Haytowitz D.B. Vitamin D and sterol composition of 10 types of mushrooms from retail suppliers in the United States. J. Agric. Food Chem. 2011;59:7841–7853. doi: 10.1021/jf104246z.
    1. United States Department of Agriculture, USDA Food Composition Database. [(accessed on 11 October 2018)]; Available online:
    1. Phillips K.M., Rasor A.S. A nutritionally meaningful increase in vitamin D in retail mushrooms is attainable by exposure to sunlight prior to consumption. J. Nutr. Food Sci. 2013;3:1.
    1. Urbain P., Jakobsen J. Dose-response effect of sunlight on vitamin D2 production in Agaricus bisporus mushrooms. J. Agric. Food Chem. 2015;63:8156–8161. doi: 10.1021/acs.jafc.5b02945.
    1. Koyyalamudi S.R., Jeong S.C., Pang G., Teal A., Biggs T. Concentration of vitamin D2 in white button mushrooms (Agaricus bisporus) exposed to pulsed UV light. J. Food Compos. Anal. 2011;24:976–979. doi: 10.1016/j.jfca.2011.02.007.
    1. Kalaras M.D., Beelman R.B., Elias R.J. Effects of postharvest pulsed UV light treatment of white button mushrooms (Agaricus bisporus) on vitamin D2 content and quality attributes. J. Agric. Food Chem. 2012;60:220–225. doi: 10.1021/jf203825e.
    1. Jasinghe V.J., Perera C.O. Ultraviolet irradiation: The generator of vitamin D2 in edible mushrooms. Food Chem. 2006;95:638–643. doi: 10.1016/j.foodchem.2005.01.046.
    1. Ko J.A., Lee B.H., Lee J.S., Park H.J. Effect of UV-B exposure on the concentration of vitamin D2 in sliced shiitake mushroom (Lentinus edodes) and white button mushroom (Agaricus bisporus) J. Agric. Food Chem. 2008;56:3671–3674. doi: 10.1021/jf073398s.
    1. Wittig M., Krings U., Berger R.G. Single-run analysis of vitamin D photoproducts in oyster mushroom (Pleurotus ostreatus) after UV-B treatment. J. Food Compos. Anal. 2013;31:266–274. doi: 10.1016/j.jfca.2013.05.017.
    1. Jasinghe V.J., Perera C.O. Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D2 by UV irradiation. Food Chem. 2005;92:541–546. doi: 10.1016/j.foodchem.2004.08.022.
    1. Jasinghe V.J., Perera C.O., Barlow P.J. Vitamin D2 from irradiated mushrooms significantly increases femur bone mineral density in rats. J. Toxicol. Environ. Health. 2006;69:1979–1985. doi: 10.1080/15287390600751413.
    1. Huang G., Cai W., Xu B. Vitamin D2, ergosterol, and vitamin B2 content in commercially dried mushrooms marketed in China and increased vitamin D2 content following UV-C irradiation. Int. J. Vitam. Nutr. Res. 2016;1:1–10. doi: 10.1024/0300-9831/a000294.
    1. Guan W., Zhang J., Yan R., Shao S., Zhou T., Lei J., Wang Z. Effects of UV-C treatment and cold storage on ergosterol and vitamin D2 contents in different parts of white and brown mushroom (Agaricus bisporus) Food Chem. 2016;210:129–134. doi: 10.1016/j.foodchem.2016.04.023.
    1. Perera C.O., Jasinghe V.J., Ng F.L., Mujumdar A.S. The effect of moisture content on the conversion of ergosterol to vitamin D in shiitake mushrooms. Dry. Technol. 2003;21:1091–1099. doi: 10.1081/DRT-120021876.
    1. Krings U., Berger R.G. Dynamics of sterols and fatty acids during UV-B treatment of oyster mushroom. Food Chem. 2014;149:10–14. doi: 10.1016/j.foodchem.2013.10.064.
    1. Wu W.J., Ahn B.Y. Statistical optimization of ultraviolet irradiate conditions for vitamin D2 synthesis in oyster mushrooms Pleurotus ostreatus) using response surface methodology. PLoS ONE. 2014;9:e95359. doi: 10.1371/journal.pone.0095359.
    1. Rangel-Castro J.I., Staffas A., Danell E. The ergocalciferol content of dried pigmented and albino Cantharellus cibarius fruit bodies. Mycol. Res. 2002;106:70–73. doi: 10.1017/S0953756201005299.
    1. Nölle N., Argyropoulos D., Müller J., Biesalski H.K. Temperature stability of vitamin D2 and color changes during drying of UVB-treated mushrooms. Dry. Technol. 2018;36:307–315. doi: 10.1080/07373937.2017.1326501.
    1. Slawińska A., Fornal E., Radzki W., Skrzypczak K., Zalewska-Korona M., Michalak-Majewska M., Parfieniuk E., Stachniuk A. Study on vitamin D2 stability in dried mushrooms during drying and storage. Food Chem. 2016;199:203–209. doi: 10.1016/j.foodchem.2015.11.131.
    1. Lee N.K., Aan B.Y. Optimization of ergosterol to vitamin D2 synthesis in Agaricus bisporus powder using ultraviolet-B radiation. Food Sci. Biotechnol. 2016;25:1627–1631. doi: 10.1007/s10068-016-0250-0.
    1. Chien R.C., Yang S.C., Lin L.M., Mau J.L. Anti-inflammatory and antioxidant properties of pulsed light irradiated Lentinula edodes. J. Food Process. Preserv. 2017;41:e13045. doi: 10.1111/jfpp.13045.
    1. Roberts J.S., Teichert A., McHugh T.H. Vitamin D2 formation from post-harvest UV-B treatment of mushrooms (Agaricus bisporus) and retention during storage. J. Agric. Food Chem. 2008;56:4541–4544. doi: 10.1021/jf0732511.
    1. Slawińska A., Fornal E., Radzki W., Jablonska-Rys E., Parfieniuk E. Vitamin D2 stability during the refrigerated storage of ultraviolet B-treated cultivated culinary-medicinal mushrooms. Int. J. Med. Mushrooms. 2017;19:249–255. doi: 10.1615/IntJMedMushrooms.v19.i3.70.
    1. Mattila P., Ronkainen R., Lehikoinen K., Piironen V. Effect of household cooking on the vitamin D content in fish, eggs, and wild mushrooms. J. Food Compos. Anal. 1999;12:153–160. doi: 10.1006/jfca.1999.0828.
    1. Ložnjak P., Jakobsen J. Stability of vitamin D3 and vitamin D2 in oil, fish and mushrooms after house-hold cooking. Food Chem. 2018;254:144–149. doi: 10.1016/j.foodchem.2018.01.182.
    1. Outila T.A., Mattila P.H., Piironen V.I., Lamberg-Allardt C.J.E. Bioavailability of vitamin D from wild edible mushrooms (Cantharellus tubaeformis) as measured with a human bioassay. Am. J. Clin. Nutr. 1999;69:95–98. doi: 10.1093/ajcn/69.1.95.
    1. Jasinghe V.J., Perera C.O., Barlow P.J. Bioavailability of vitamin D2 from irradiated mushrooms: An in vivo study. Br. J. Nutr. 2005;93:951–955. doi: 10.1079/BJN20051416.
    1. Calvo M.S., Babu U.S., Garthoff L.H., Woods T.O., Dreher M., Hill G., Nagaraja S. Vitamin D2 from light-exposed edible mushrooms is safe, bioavailable and effectively supports bone growth in rats. Osteoporos. Int. 2013;24:197–207. doi: 10.1007/s00198-012-1934-9.
    1. Urbain P., Singler F., Ihorst G., Biesalski H.K., Bertz H. Bioavailability of vitamin D2 from UV-B-irradiated button mushrooms in healthy adults deficient in serum 25-hydroxyvitamin D: A randomized controlled trial. Eur. J. Clin. Nutr. 2011;65:965–971. doi: 10.1038/ejcn.2011.53.
    1. Stephensen C.B., Zerofsky M., Burnett D.J., Lin Y., Hammock B.D., Hall L.M., McHugh T. Ergocalciferol from mushrooms or supplements consumed with a standard meal increases 25-hydroxyergocalciferol but decreases 25-hydroxycholecalciferol in the serum of healthy adults. J. Nutr. 2012;142:1246–1252. doi: 10.3945/jn.112.159764.
    1. Stepien M., O’Mahony L., O’Sullivan A., Collier J., Fraser W.D., Gibney M.J., Nugent A.P., Brennan L. Effect of supplementation with vitamin D2-enhanced mushrooms on vitamin D status in healthy adults. J. Nutr. Sci. 2013;2:e29.
    1. Mehrotra A., Calvo M.S., Beelman R.B., Levy E., Siuty J., Kalaras M.D., Uribarri J. Bioavailability of vitamin D2 from enriched mushrooms in prediabetic adults: A randomized controlled trial. Eur. J. Clin. Nutr. 2014;68:1154–1160. doi: 10.1038/ejcn.2014.157.
    1. Lee G., Byun H., Yoon K., Choi K., Jeung E. Dietary calcium and vitamin D2 supplementation with enhanced Lentinula edodes improves osteoporosis-like symptoms and induces duodenal and renal active calcium transport gene expression in mice. Eur. J. Nutr. 2009;48:75–83. doi: 10.1007/s00394-008-0763-2.
    1. Chen S.Y., Yu H.T., Kao J.P., Yang C.C., Chiang S.S., Mishchuk D.O., Mau J.L., Slupsky C.M. Consumption of vitamin D2 enhanced mushrooms is associated with improved bone health. J. Nutr. Biochem. 2015;26:696–703. doi: 10.1016/j.jnutbio.2015.01.006.
    1. Wilson L.R., Tripkovic L., Hart K.H., Lanham-New S.A. Vitamin D deficiency as a public health issue: Using vitamin D2 or vitamin D3 in future fortification strategies. Proc. Nutr. Soc. 2017;76:392–399. doi: 10.1017/S0029665117000349.
    1. Tripkovic L., Wilson L.R., Hart K.H., Johnsen S., de Lusignan S., Smith C.P., Bucca G., Penson S., Chope G., Elliot R., et al. Daily supplementation with 15 μg vitamin D2 compared with vitamin D3 to increase wintertime 25-hydroxyvitamin D status in healthy South Asian and white European women: A 12-wk randomized, placebo-controlled food-fortification trial. Am. J. Clin. Nutr. 2017;106:481–490. doi: 10.3945/ajcn.116.138693.
    1. Feeney M.J., Miller A.M., Roupas P. Mushrooms-biologically distinct and nutritionally unique. Nutr. Today. 2014;49:301–307. doi: 10.1097/NT.0000000000000063.
    1. McCance and Widdowson’s Composition of Food Integrated Dataset. Institute of Food Research, Public Health England; London, UK: 2015.

Source: PubMed

3
Sottoscrivi