Effects of group singing versus group music listening on hospitalized children and adolescents with mental disorders: A pilot study

Katarzyna Grebosz-Haring, Leonhard Thun-Hohenstein, Katarzyna Grebosz-Haring, Leonhard Thun-Hohenstein

Abstract

Background: There is an emerging view that music-related interventions (MuRI) may play an important role for youth with mental disorders. Here, we assessed the potential neuroendocrine (cortisol), immune (IgA) and psychological (mood state, health-related quality of life (HRQOL), well-being) efficacy of a brief program of MuRI (group singing versus group music listening) in children and adolescents with mental disorders in a clinical setting.

Methods: We performed this observational pilot study with 17 patients (aged 11-18; 11 female) admitted to the Department for Child and Adolescent Psychiatry/PMU Salzburg, Austria between March 2015 and April 2016. Patients participated in either a singing program or a music listening program, delivered through five daily, consecutive 45-minute sessions in one week.

Outcomes: Saliva samples for cortisol and IgA, and subjective measures of mood were taken daily, pre- and post-MuRI. HRQOL and well-being were measured pre- and post-5-day-program of MuRI. The program in singing led to a significantly larger mean drop in cortisol than in music listening (mean difference: -0·32; 95% CI -0·57 to -0·07), while listening led to a significantly higher mean positive change in the dimension calmness (mean difference: -2·66, 95%CI -4·99 to -0·33) than singing. Moreover, singing was associated with an improvement in HRQOL, and listening with an improvement in well-being.

Interpretation: Our preliminary findings suggest that MuRI may provide benefits for children and adolescents with mental disorders. The differences in psychobiological responses to singing and music listening invite further investigations. A larger, suitably powered study is now needed to provide a precise estimate of the effects of MuRI for mental health promotion, both on psychological and biological experiences. Funding: Salzburg Festival, Austria, and Focus Area 'Science and Art', Salzburg, Austria.

Keywords: Clinical psychology; Pediatrics; Psychiatry; Psychology.

Figures

Fig. 1
Fig. 1
Study profile.
Fig. 2
Fig. 2
Changes in the Multidimensional Mood Questionnaire subscales (mean differences ±SDs) by workshop day: singing vs. music listening.
Fig. 3
Fig. 3
Changes in Cortisol and IgA (mean differences ±SDs) by workshop day: singing vs. music listening.

References

    1. Erskine H.E., Moffitt T.E., Copeland W.E. A heavy burden on young minds: the global burden of mental and substance use disorders in children and youth. Psychol. Med. 2015;45(7):1561–1563.
    1. Wagner G., Zeiler M., Waldher K. Mental health problems in Austrian adolescents: an nationwide, two-stage epidemiological study applying DSM-5 criteria. Eur. Child Adolesc. Psychiatr. 2017;26(12):1483–1499.
    1. Schlupp I., Wanker R., Wegner M. Entwicklungsbiologische Grundlagen. In: Herpertz-Dahlmann B., Resch F., Schulte-Markwort M., Warnke A., editors. Entwicklungspsychiatrie: Biopsychosoziale Grundlagen und die Entwicklung psychischer Störungen. Schattauer Verlag; Stuttgart: 2003. pp. 1–88.
    1. Wiedemann K., Jahn H. Entwicklungsneuroendokrinologie. In: Herpertz-Dahlmann B., Resch F., Schulte-Markwort M., Warnke A., editors. Entwicklungspsychiatrie: Biopsychosoziale Grundlagen und die Entwicklung psychischer Störungen. Schattauer Verlag; Stuttgart: 2003. pp. 41–54.
    1. Lupien S.J., McEwen B.S., Gunnar M.R., Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 2009;10(6):434–445.
    1. Yirmiya K., Djalovski A., Motsam S., Zagoory-Sharon O., Feldman R. Stress and immune biomarkers interact with parenting behavior to shape anxiety symptoms in trauma-exposed youth. Psychoneuroendocrinology. 2018;98:153–160.
    1. Kirschbaum C., Hellhammer D.H. Salivary cortisol in psychoneuroendocrine research: recent developments and applications. Psychoneuroendocrinology. 1994;19:313–333.
    1. McEwen B.S., Steller E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 1993;153(18):2093–2101.
    1. Miletic I.D., Schiffmann S.S., Miletic V.D., Sattely-Miller E.A. Salivary IgA secretion rate in young and eldery persons. Physiol. Behav. 1996;60(1):243–248.
    1. Jemmott J.B., Magloire K. Academic stress, social support, and secretory immunoglobulin A. J. Pers. Soc. Psychol. 1988;55(5):803–810.
    1. Shonkoff J.P. Building a new biodevelopmental framework to guide the future of early childhood policy. Child Dev. 2010;81(1):357–467.
    1. Hudziak J.J., Achenbach T.M., Althoff R.R., Pine D.S. A dimensional approach to developmental psychopathology. Int J. Method. Psychiatr. Res. 2007;16(S1):16–23.
    1. Hudziak J., Archangeli C. The future of preschool prevention, assessment, and intervention. Child Adolesc. Psychiatr. Clin. N. Am. 2017;26(3):611–624.
    1. Guidelines of the AWMF (Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften). (accessed October 5, 2018).
    1. Stegemann T., Mauch C., Stein V., Romer G. Zur Situation der Musiktherapie in der stationären Kinder- und Jugendpsychiatrie. Z. Kinder JugenPsychiatr. Psychother. 2008;36(4):255–263.
    1. MacDonald R., Kreutz G., Mitchell L., editors. Music, Health, and Wellbeing. Oxford University Publisher; New York: 2012.
    1. Koelsch S., Offermanns K., Franzke P. Music in the treatment of affective disorders: an exploratory investigation of a new method for music-therapeutic research. Music Percep. 2010;27(4):307–316.
    1. Pelletier C.L. The effect of music on decreasing arousal due to stress: a meta-analysis. J. Music Ther. 2004;41(3):192–214.
    1. Koelsch S. Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 2014;15(3):170–180.
    1. Zatorre R.J., Salimpoor V.N. From perception to pleasure: music and its neural substrates. Proc. Natl. Acad. Sci. U. S. A. 2013;110(S2):10430–10437.
    1. Koelsch S. Investigating the neural encoding of emotion with music. Neuron. 2018;98(6):1075–1079.
    1. McEwen B.S., Gianaros P.J. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann. N. Y. Acad. Sci. 2010;1186(1):190–222.
    1. Blood A.J., Zatorre R.J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl. Acad. Sci. U. S. A. 2001;98(20):11818–11823.
    1. Brown S., Martinez M.J., Parsons L.M. Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport. 2004;15(13):2033–2037.
    1. Koelsch S., Fritz T., Cramon von D.Y., Müller K., Friederici A.D. Investigating emotions with music: an fMRI study. Hum. Brain Mapp. 2006;27(3):239–250.
    1. Salimpoor V.N., Benovoy M., Larcher K., Dagher A., Zatorre R.J. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 2011;14(2):257–264.
    1. Altenmüller E., Schlaug G. Music, brain, and health: exploring biological foundations of music's health effects. In: MacDonald R.A.R., Kreutz G., Mitchell L., editors. Music, Health, and Wellbeing. Oxford University Press; Oxford: 2012. pp. 11–24.
    1. Koelsch S., Stegemann T. The brain and positive biological effects in healthy and clinical populations. In: MacDonald R.A.R., Kreutz G., Mitchell L., editors. Music, Health, and Wellbeing. Oxford University Press; Oxford: 2013. pp. 436–456.
    1. Koelsch S., Fuermetz J., Sack U. Effects of music listening on cortisol levels and propofol consumption during spinal anesthesia. Front. Psychol. 2011;2(58):1–9.
    1. Sihvonen A.J., Särkämö T., Leo V., Tervaniemi M., Altenmüller E., Soinila S. Music-based interventions in neurological rehabilitation. Lancet Neurol. 2017;16(8):648–660.
    1. Kreutz G., Lotze M. Neuroscience of music and emotion. In: Gruhn W., Rauscher F., editors. Neurosciences in Music Pedagogy. Vol. 6. Nova Science Publishers, Inc; 2007. pp. 143–167.
    1. Hudziak J.J., Albaugh M.D., Ducharme S. Cortical thickness maturation and duration of music training: health-promoting activities shape brain development. J. Am. Acad. Child Adolesc. Psychiatr. 2014;53(11):1153–1161.
    1. Kleber B.B.N., Veit R., Trevorrow T., Lotze M. Overt and imagined singing of an Italian aria. Neuroimage. 2007;36:889–900.
    1. Launay J., Tarr B., Dunbar R.I.M. Synchrony as an adaptive mechanism for large-scale human social bonding. Ethology. 2016;122(10):779–789.
    1. Tarr B., Launay J., Dunbar R.I.M. Music and social bonding: “Self-other” merging and neurohormonal mechanisms. Front. Psychol. 2014;5(1096):1–10.
    1. Pearce E., Launay J., van Duijn M., Rotkirch A., David-Barrett T., Dunbar R.I.M. Singing together or apart: the effect of competitive and cooperative singing on social bonding within and between sub-groups of a university fraternity. Psychol. Music. 2016;44(6):1255–1273.
    1. Weinstein D., Launay J., Pearce E., Dunbar R.I.M., Stewart L. Group music performance causes elevated pain thresholds and social bonding in small and large groups of singers. Evol. Hum. Behav. 2016;37(2):152–158.
    1. Bullack A., Gass C., Nater U.M., Kreutz G. Psychobiological effects of choral singing on affective state, social connectedness, and stress: influences of singing sctivity and time course. Front. Behav. Neurosci. 2018;12(223):1–40.
    1. Kreutz G., Bongard S., Rohrmann S., Hodapp V., Grebe D. Effects of choir singing or listening on secretory immunoglobulin A, cortisol, and emotional state. J. Behav. Med. 2004;27(6):623–635.
    1. Kreutz G. Does singing facilitate social bonding? Music Med. 2014;6(2):51–60.
    1. Machin A.J., Dunbar R.I.M. The brain opioid theory of social attachment: a review of the evidence. Behaviour. 2011;148(9–10):985–1025.
    1. Dunbar R.I.M., Kaskatis K., MacDonald I., Barra V. Performance of music elevates pain threshold and positive affect. Evol. Psychol. 2012;10(4):688–702.
    1. Feldman R., Gordon I., Zagoory-Sharon O. Maternal and paternal plasma, salivary, and urinary oxytocin and parent-infant synchrony: considering stress and affiliation components of human bonding. Dev. Sci. 2011;14(4):752–761.
    1. Heinrichs M., Dawans von B., Domes G. Oxytocin, vasopressing, and human soscial behavior. Front. Neuroendocrinol. 2009;30:548–557.
    1. Kreutz G., Murcia C.Q., Bongard S. Psychoneuroendocrine research on music and health: an overview. In: MacDonald R.A.R., Kreutz G., Mitchell L., editors. Music, Health, and Wellbeing. Oxford University Press; Oxford: 2012. pp. 457–476.
    1. Olff M., Frijling J.L., Kubzansky L.D. The role of oxytocin in social bonding, stress regulation and mental health: an update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology. 2013;38(9):1883–1894.
    1. Quiroga M.C., Kreutz G., Bongard S. Endokrine und immunologische Wirkungen von Musik. In: Schubert C., editor. Psychoneuroimmunologie und Psychotherapie. Schattauer; Stuttgart: 2011. pp. 248–262.
    1. Chanda M.L., Levitin D.J. The neurochemistry of music. Trends Cognit. Sci. 2013;17(4):179–191.
    1. Fancourt D., Ockelford A., Belai A. The psychoneuroimmunological effects of music: a systematic review and a new model. Brain Behav. Immun. 2014;36:15–26.
    1. Finn S., Fancourt D. The biological impact of listening to music in clinical and nonclinical settings: a systematic review. Prog. Brain Res. 2018;237:173–200.
    1. Kuhn D. The effects of active and passive participation in musical activity on the immune system as measured by salivary immunoglobulin A (SIgA) J. Music Ther. 2002;39(1):30–39.
    1. Bartlett D., Kaufman D., Smeltekop R. The effects of music listening and perceived sensory experiences on the immune system as measured by interleukin-1 and cortisol. J. Music Ther. 1993;30(4):194–209.
    1. Schladt T.M., Nordmann G.C., Emilius R., Kudielka B.M., De Jong T.R., Neumann I.D. Choir versus solo singing: effects on mood, and salivary oxytocin and cortisol concentrations. Front. Hum. Neurosci. 2017;11(430):1–9.
    1. Fancourt D., Williamon A., Carvalho L.A., Steptoe A., Dow R., Lewis I. Singing modulates mood, stress, cortisol, cytokine and neuropeptide activity in cancer patients and carers. Ecancermedicalscience. 2016;10(631):1–13.
    1. Beck R.J., Cesario T.C., Yousefi A., Enamoto H. Choral singing, performance perception, and immune system changes in salivary immunoglobulin A and cortisol. Music Percept. 2000;18(1):87–106.
    1. Carr C., Odell-Miller H., Priebe S. A systematic review of music therapy practice and outcomes with acute adult psychiatric in-patients. PLoS One. 2013;8(8):e70252.
    1. Gold C., Voracek M., Wigram T. Effects of music therapy for children and adolescents with psychopathology: a meta-analysis. J Child Psychol. Psychiatr. 2004;45(6):1054–1063.
    1. Porter S., McConnell T., McLaughlin K. Music therapy for children and adolescents with behavioural and emotional problems: a randomised controlled trial. J Child Psychol. Psychiatr. 2017;58(5):586–594.
    1. Gold C., Wigram T., Voracek M. Effectiveness of music therapy for children and adolescents with psychopathology: a quasi-experimental study. Psychother. Res. 2007;17(3):292–300.
    1. Shuman J., Kennedy H., DeWitt P., Edelblute A., Wamboldt M.Z. Group music therapy impacts mood states of adolescents in a psychiatric hospital setting. Arts Psychother. 2016;49:50–56.
    1. Yinger S.O., Gooding L. Music therapy and music medicine for children and adolescents. Child Adolesc. Psychiatr. Clin. 2014;23(3):535–553.
    1. Geipel J., Koenig J., Hillecke T.K., Resch F., Kaess M. Music-based interventions to reduce internalizing symptoms in children and adolescents: a meta-analysis. J. Affect. Disord. 2018;225:647–656.
    1. Whipple J. Music in intervention for children and adolescents with autism: a meta-analysis. J. Music Ther. 2004;41(2):90–106.
    1. Chen C.J., Sung H.C., Lee M.S., Chang C.Y. The effects of Chinese five-element music therapy on nursing students with depressed mood. Int. J. Nurs. Pract. 2015;21(2):192–199.
    1. Field T., Martinez A., Nawrocki T., Pickens J., Fox N.A., Schanberg S. Music shifts frontal EEG in depressed adolescents. Adolescence. 1998;33(129):109–116.
    1. Grebosz-Haring K., Thun-Hohenstein L. Singing for health and wellbeing in children and adolescents with mental disorders. In: Heiden R., Fancourt D., Cohen A., editors. The Routledge Companion to Interdisciplinary Studies in Singing: Vol 3 Wellbeing. Routledge, Taylor & Francis Group; Oxford, UK: 2019. (in print)
    1. Hinshaw T., Clift S., Hulbert S., Camic P.M. Group singing and young people's psychological well-being. Int. J. Ment. Health Promot. 2015;17(1):46–63.
    1. Steyer R., Schwenkmezger P., Notz P., Eid M. Testtheoretische Analysen des mehrdimensionalen Befindlichkeitsfragebogens (MDBF) (Multidimensional Mood Questionnaire) Diagnostica. 1994;40(4):320–328.
    1. Tennant R., Hiller L., Fishwick R. The Warwick-Edinburgh Mental Well-being Scale (WEMWBS): development and UK validation. Health Qual. Life Outcome. 2007;5(63):1–13.
    1. Lang G., Bachinger A. Validation of the German Warwick-Edinburgh Mental Well-Being Scale (WEMWBS) in a community-based sample of adults in Austria: a bi-factor modelling approach. J. Public Health. 2017;25(2):135–146.
    1. Varni J.W., Seid M., Kurtin P.S. PedsQL (TM) 4.0: reliability and validity of the pediatric quality of life inventory (TM) version 4.0 generic core scales in healthy and patient populations. Med. Care. 2001;39(8):800–812.
    1. Billingham S.A., Whitehead A.L., Julious S.A. An audit of sample sizes for pilot and feasibility trials being undertaken in the United Kingdom registered in the United Kingdom Clinical Network database. Med. Res. Methodol. 2013;13(104):1–6.
    1. Berg J.M., Tymoczko J.L., Gatto G.J., Stryer L. Springer; Wien, New York: 2018. Biochemie.
    1. Stratton V., Zalanowski A. Affective impact of music vs. lyrics. Empir. Stud. Arts. 1994;12:173–184.

Source: PubMed

3
Sottoscrivi