Tumor necrosis factor receptor 1 (TNFRI) for ventilator-associated pneumonia diagnosis by cytokine multiplex analysis

Ignacio Martin-Loeches, Lieuwe D Bos, Pedro Povoa, Paula Ramirez, Marcus J Schultz, Antoni Torres, Antonio Artigas, Ignacio Martin-Loeches, Lieuwe D Bos, Pedro Povoa, Paula Ramirez, Marcus J Schultz, Antoni Torres, Antonio Artigas

Abstract

Background: The diagnosis of ventilator-associated pneumonia (VAP) is challenging. An important aspect to improve outcome is early recognition of VAP and the initiation of the appropriate empirical treatment. We hypothesized that biological markers in plasma can rule out VAP at the moment of clinical suspicion and could rule in VAP before the diagnosis can be made clinically.

Methods: In this prospective study, patients with VAP (n = 24, microbiology confirmed) were compared to controls (n = 19) with a similar duration of mechanical ventilation. Blood samples from the day of VAP diagnosis and 1 and 3 days before were analyzed with a multiplex array for markers of inflammation, coagulation, and apoptosis. The best biomarker combination was selected and the diagnostic accuracy was given by the area under the receiver operating characteristic curve (ROC-AUC).

Results: TNF-receptor 1 (TNFRI) and granulocyte colony-stimulating factor (GCSF) were selected as optimal biomarkers at the day of VAP diagnosis, which resulted in a ROC-AUC of 0.96, with excellent sensitivity. Three days before the diagnosis TNFRI and plasminogen activator inhibitor-1 (PAI-1) levels in plasma predicted VAP with a ROC-AUC of 0.79. The slope of IL-10 and PAI-1 resulted in a ROC-AUC of 0.77. These biomarkers improved the classification of the clinical pulmonary infection score when combined.

Conclusions: Concentration of TNFRI and PAI-1 and the slope of PAI-1 and IL-10 may be used to predict the development of VAP as early as 3 days before the diagnosis made clinically. TNFRI and GCSF may be used to exclude VAP at the moment of clinical suspicion. Especially TNFRI seems to be a promising marker for the prediction and diagnosis of VAP.

Figures

Fig. 1
Fig. 1
Patient flow
Fig. 2
Fig. 2
Calibration plots at the three different time points. Calibration plots for the biomarker models. X-axis: predicted probability of VAP by the biomarker concentrations. Y-axis: the proportion of patients that actually had VAP. The grey dots show the predicted probabilities of the individual patients. The black triangles show the quantile summary and the black line the smoothed association between predicted and actual probability of VAP. The grey dotted line shows the ideal situation where predicted and actual probability are equal. a TNFRI and GCSF at the day of VAP diagnosis. b TNFRI and PAI-1 3 days before VAP. c IL-10 and PAI-1 slope before the diagnosis of VAP

References

    1. Torres A, Ewig S, Lode H, Carlet J. Defining, treating and preventing hospital acquired pneumonia: European perspective. Intensive Care Med. 2009;35:9–29. doi: 10.1007/s00134-008-1336-9.
    1. Koulenti D, Lisboa T, Brun-Buisson C, Krueger W, Macor A, Sole-Violan J, Diaz E, Topeli A, DeWaele J, Carneiro A, Martin-Loeches I, Armaganidis A, Rello J. Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit Care Med. 2009;37:2360–8. doi: 10.1097/CCM.0b013e3181a037ac.
    1. Bassetti M, Taramasso L, Giacobbe DR, Pelosi P. Management of ventilator-associated pneumonia: epidemiology, diagnosis and antimicrobial therapy. Expert Rev Anti Infect Ther. 2012;10:585–96. doi: 10.1586/eri.12.36.
    1. Martin-Loeches I, Deja M, Koulenti D, Dimopoulos G, Marsh B, Torres A, Niederman MS, Rello J. Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med. 2013;39:672–681. doi: 10.1007/s00134-012-2808-5.
    1. Ioanas M, Ferrer M, Cavalcanti M, Ferrer R, Ewig S, Filella X, de la Bellacasa JP, Torres A. Causes and predictors of nonresponse to treatment of intensive care unit-acquired pneumonia. Crit Care Med. 2004;32:938–45. doi: 10.1097/01.CCM.0000114580.98396.91.
    1. Póvoa P, Salluh JIF. Biomarker-guided antibiotic therapy in adult critically ill patients: a critical review. Ann Intensive Care. 2012;2:32. doi: 10.1186/2110-5820-2-32.
    1. Bloos F, Marshall JC, Dellinger RP, Vincent J-L, Gutierrez G, Rivers E, Balk RA, Laterre P-F, Angus DC, Reinhart K, Brunkhorst FM. Multinational, observational study of procalcitonin in ICU patients with pneumonia requiring mechanical ventilation: a multicenter observational study. Crit Care. 2011;15:R88. doi: 10.1186/cc10087.
    1. Moreno MS, Nietmann H, Matias CM, Lobo SM. C-reactive protein: a tool in the follow-up of nosocomial pneumonia. J Infect. 2010;61:205–11. doi: 10.1016/j.jinf.2010.06.005.
    1. Luyt C-E, Combes A, Trouillet J-L, Chastre J. Biomarkers to optimize antibiotic therapy for pneumonia due to multidrug-resistant pathogens. Clin Chest Med. 2011;32:431–8. doi: 10.1016/j.ccm.2011.05.004.
    1. Pencina MJ, D’Agostino RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–72. doi: 10.1002/sim.2929.
    1. Pugin J, Auckenthaler R, Mili N, Janssens JP, Lew PD, Suter PM. Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic “blind” bronchoalveolar lavage fluid. Am Rev Respir Dis. 1991;143(5 Pt 1):1121–9. doi: 10.1164/ajrccm/143.5_Pt_1.1121.
    1. Ferrer M, Liapikou A, Valencia M, Esperatti M, Theessen A, Antonio Martinez J, Mensa J, Torres A. Validation of the American Thoracic Society-Infectious Diseases Society of America guidelines for hospital-acquired pneumonia in the intensive care unit. Clin Infect Dis. 2010;50:945–52. doi: 10.1086/651075.
    1. Vignali DA. Multiplexed particle-based flow cytometric assays. J Immunol Methods. 2000;243:243–55. doi: 10.1016/S0022-1759(00)00238-6.
    1. De Jager W, te Velthuis H, Prakken BJ, Kuis W, Rijkers GT. Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells. Clin Diagn Lab Immunol. 2003;10:133–9.
    1. Khan SS, Smith MS, Reda D, Suffredini AF, McCoy JP. Multiplex bead array assays for detection of soluble cytokines: comparisons of sensitivity and quantitative values among kits from multiple manufacturers. Cytometry B Clin Cytom. 2004;61:35–9. doi: 10.1002/cyto.b.20021.
    1. Flahault A, Cadilhac M, Thomas G. Sample size calculation should be performed for design accuracy in diagnostic test studies. J Clin Epidemiol. 2005;58:859–862. doi: 10.1016/j.jclinepi.2004.12.009.
    1. R Development Core Team . Book R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2010.
    1. Harrell E Jr (2014) rms Regres Model Strateg R Packag version 41-3 . Accesed 7th July 2015
    1. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi: 10.1186/1471-2105-12-77.
    1. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.
    1. Evangelidou M, Tseveleki V, Vamvakas S-S, Probert L. TNFRI is a positive T-cell costimulatory molecule important for the timing of cytokine responses. Immunol Cell Biol. 2010;88:586–95. doi: 10.1038/icb.2010.12.
    1. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306:2594–605. doi: 10.1001/jama.2011.1829.
    1. Kontermann RE, Münkel S, Neumeyer J, Müller D, Branschädel M, Scheurich P, Pfizenmaier K. A humanized tumor necrosis factor receptor 1 (TNFR1)-specific antagonistic antibody for selective inhibition of tumor necrosis factor (TNF) action. J Immunother. 2008;31:225–34. doi: 10.1097/CJI.0b013e31816a88f9.
    1. Rea-Neto A, Youssef NCM, Tuche F, Brunkhorst F, Ranieri VM, Reinhart K, Sakr Y. Diagnosis of ventilator-associated pneumonia: a systematic review of the literature. Crit Care. 2008;12:R56. doi: 10.1186/cc6877.
    1. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM, Musher DM, Niederman MS, Torres A, Whitney CG. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44 Suppl 2(Suppl 2):S27–72. doi: 10.1086/511159.
    1. Fàbregas N, Ewig S, Torres A, El-Ebiary M, Ramirez J, de La Bellacasa JP, Bauer T, Cabello H. Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies. Thorax. 1999;54:867–73. doi: 10.1136/thx.54.10.867.
    1. Young HA. Cytokine multiplex analysis. Methods Mol Biol. 2009;511:85–105. doi: 10.1007/978-1-59745-447-6_4.
    1. Conway Morris A, Kefala K, Wilkinson TS, Moncayo-Nieto OL, Dhaliwal K, Farrell L, Walsh TS, Mackenzie SJ, Swann DG, Andrews PJD, Anderson N, Govan JRW, Laurenson IF, Reid H, Davidson DJ, Haslett C, Sallenave J-M, Simpson AJ. Diagnostic importance of pulmonary interleukin-1beta and interleukin-8 in ventilator-associated pneumonia. Thorax. 2010;65:201–7. doi: 10.1136/thx.2009.122291.
    1. Zhou X, Fragala MS, McElhaney JE, Kuchel GA. Conceptual and methodological issues relevant to cytokine and inflammatory marker measurements in clinical research. Curr Opin Clin Nutr Metab Care. 2010;13:541–7. doi: 10.1097/MCO.0b013e32833cf3bc.

Source: PubMed

3
Sottoscrivi