Clinical Experience of Sirolimus Regarding Efficacy and Safety in Systemic Lupus Erythematosus

Per Eriksson, Philip Wallin, Christopher Sjöwall, Per Eriksson, Philip Wallin, Christopher Sjöwall

Abstract

New treatment options constitute unmet needs for patients diagnosed with systemic lupus erythematosus (SLE). Inhibition of the mammalian target of rapamycin (mTOR) pathway by sirolimus, a drug approved and in clinical use to prevent transplant rejection, has shown promising effects in lupus animal models as well as in patients with both antiphospholipid syndrome and SLE. Sirolimus inhibits antigen-induced T cell proliferation and increases the number of circulating regulatory T cells. Recently, sirolimus was tested in an open label phase 1/2 trial, including 43 patients with active SLE, resistant or intolerant to conventional medications. The results were encouraging showing a progressive improvement, including mucocutaneous and musculoskeletal manifestations. At our university unit, we have more than 16 years' experience of sirolimus as treatment for non-renal manifestations of SLE. Herein, we retrospectively evaluated data on tolerance, dosage, affected organ systems, disease activity measures, corticosteroid reduction, concomitant immunosuppressive therapies, and patient-reported outcome measures (PROMs) such as pain intensity, fatigue, well-being and quality-of-life (QoL) in 27 Caucasian patients with mildly active SLE. Musculoskeletal manifestation was the main reason for sirolimus treatment followed by skin involvement and leukocytopenia. Mean time on sirolimus was 47.1 (range 2-140) months. Decreasing global disease activity was observed, as measured by the clinical SLE disease activity index-2000, with a mean reduction of 2.5 points (range -10 to 0) and a corresponding mean reduction of the physician's global assessment (0-4) of 0.64 (range -2 to 0). The mean daily dose of corticosteroids (prednisolone) was reduced by 3.3 mg (-12.5 to 0). Non-significant trends toward improvements of QoL and pain intensity were found. Serious side-effects were not seen during sirolimus treatment, but early withdrawal due to nausea (n = 4) and non-serious infections (n = 2) appeared. This observational study, including longtime real-life use of sirolimus in SLE, is the largest to date and it essentially confirms the results of the recent phase 1/2 trial. Our data indicate that sirolimus is efficient in patients with musculoskeletal SLE manifestations, particularly arthritis and tendinitis. Further randomized controlled trials evaluating the potential benefits of sirolimus in SLE are warranted, but should aim to enroll patients with shorter disease duration, less accrued damage, and more diverse ethnicities.

Keywords: arthritis; musculoskeletal pain; quality-of-life; sirolimus; systemic lupus erythematosus; tendinitis.

Figures

FIGURE 1
FIGURE 1
(A–D) Longitudinal laboratory efficacy data at the first 12 visits of the 21 cases that passed the 3-month evaluation visit; (A) C-reactive protein, (B) erythrocyte sedimentation rate, (C) complement protein 3, and (D) complement protein 4. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.005.
FIGURE 2
FIGURE 2
(A–D) Differences in global disease activity between start/initiation of sirolimus therapy with regard to (A) clinical SLEDAI-2K, and (B) physician’s global assessment (PGA). (C) Illustrates the reduction of PGA scores with regard to type of musculoskeletal manifestation. (D) Demonstrates the correlation between reduction of daily corticosteroid dose and the exposure of sirolimus in months. ∗p < 0.05.
FIGURE 3
FIGURE 3
(A–F) Longitudinal laboratory safety data at the first 12 visits of the 27 cases; (A) hemoglobin, (B) white blood cell count, (C) neutrophil count, (D) lymphocyte count, (E) platelet count, and (F) plasma creatinine. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.005.

References

    1. Asleh R., Briasoulis A., Pereira N. L., Edwards B. S., Frantz R. P., Daly R. C., et al. (2018). Hypercholesterolemia after conversion to sirolimus as primary immunosuppression and cardiac allograft vasculopathy in heart transplant recipients. J. Heart Lung Transplant. 37 1372–1380. 10.1016/j.healun.2018.07.004
    1. Banica L., Besliu A., Pistol G., Stavaru C., Vlad V., Predeteanu D., et al. (2017). Dysregulation of anergy-related factors involved in regulatory T cells defects in systemic lupus erythematosus patients: rapamycin and vitamin D efficacy in restoring regulatory T cells. Int. J. Rheum. Dis. 19 1294–1303. 10.1111/1756-185X.12509
    1. Bengtsson A. A., Rönnblom L. (2017). Role of interferons in SLE. Best. Pract. Res. Clin. Rheumatol. 31 415–428. 10.1016/j.berh.2017.10.003
    1. Bernatsky S., Ramsey-Goldman R., Labrecque J., Joseph L., Boivin J. F., Petri M., et al. (2013). Cancer risk in systemic lupus: an updated international multi-centre cohort study. J. Autoimmun. 42 130–135. 10.1016/j.jaut.2012.12.009
    1. Björk M., Dahlström Ö, Wetterö J., Sjöwall C. (2015). Quality of life and acquired organ damage are intimately related to activity limitations in patients with systemic lupus erythematosus. BMC Musculoskelet. Disord. 16:188. 10.1186/s12891-015-0621-3
    1. Bonegio R. G., Fuhro R., Wang Z., Valeri C. R., Andry C., Salant D. J., et al. (2005). Rapamycin ameliorates proteinuria-associated tubulointerstitial inflammation and fibrosis in experimental membranous nephropathy. J. Am. Soc. Nephrol. 16 2063–2072. 10.1681/ASN.2004030180
    1. Bride K., Vincent T., Smith-Whitley K., Lambert M., Bleesing J., Seif A. E., et al. (2016). Sirolimus is effective in relapsed/refractory autoimmune cytopenias: results of a prospective multi-institutional trial. Blood 127 17–28. 10.1182/blood-2015-07-657981
    1. Canaud G., Bienaime F., Tabarin F., Bataillon G., Seilhean D., Noël L. H., et al. (2014). Inhibition of the mTORC pathway in the antiphospholipid syndrome. N. Engl. J. Med. 371 303–312. 10.1056/NEJMoa1312890
    1. Cao W., Mannicassmy S., Tang H., Kasturi S. P., Pirani A., Murthy N., et al. (2008). Toll-like receptor- mediated induction of type 1 interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat. Immunol. 9 1157–1164. 10.1038/ni.1645
    1. Doria A., Cervera R., Gatto M., Chehab G., Schneider M. (2017). The new targeted therapy in systemic lupus erythematosus: is the glass half-full or half-empty? Autoimmun. Rev. 16 1119–1124. 10.1016/j.autrev.2017.09.006
    1. Elloso M. M., Azrolan N., Sehgal S., Hsu P. L., Phiel K., Kopec C. A., et al. (2003). Protective effect of the immunosuppressant sirolimus against aortic atherosclerosis in apo E-deficient mice. Am. J. Transplant. 3 562–569. 10.1034/j.1600-6143.2003.00094.x
    1. Fernandez D., Bonilla E., Mizra N., Niland B., Perl A. (2006). Rapamycin reduces disease activity and normalizes T-cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 54 2983–2988. 10.1002/art.22085
    1. Frodlund M., Dahlström Ö, Kastbom A., Skogh T., Sjöwall C. (2013). Associations between antinuclear antibody staining patterns and clinical features of systemic lupus erythematosus: analysis of a regional Swedish register. BMJ Open 3:e003608. 10.1136/bmjopen-2013-003608
    1. Gallo R., Padurean A., Jayaraman T., Marx S., Roque M., Adelman S., et al. (1999). Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation 99 2164–2170. 10.1161/01.CIR.99.16.2164
    1. Geh D., Gordon C. (2018). Epratuzumab for the treatment of systemic lupus erythematosus. Expert Rev. Clin. Immunol. 14 245–258. 10.1080/1744666X.2018.1450141
    1. Gladman D., Ginzler E., Goldsmith C., Fortin P., Liang M., Urowitz M., et al. (1996). The development and initial validation of the systemic lupus international collaborating clinics/american college of rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum. 39 363–369. 10.1002/art.1780390303
    1. Hallert E., Thyberg I., Hass U., Skargren E., Skogh T. (2003). Comparison between women and men with recent onset rheumatoid arthritis of disease activity and functional ability over two years (the TIRA project). Ann. Rheum. Dis. 62 667–670. 10.1136/ard.62.7.667
    1. Herold M., Richmond N. A., Montuno M. A., Wesson S. K., Motaparthi K. (2018). Rapamycin for refractory discoid lupus erythematosus. Dermatol. Ther. 31:e12631. 10.1111/dth.12631
    1. Ighe A., Dahlström Ö, Skogh T., Sjöwall C. (2015). Application of the 2012 systemic lupus international collaborating clinics classification criteria to patients in a regional Swedish systemic lupus erythematosus register. Arthritis Res. Ther. 17:3. 10.1186/s13075-015-0521-9
    1. Kahlenberg J. M., Kaplan M. J. (2013). Mechanisms of premature atherosclerosis in rheumatoid arthritis and lupus. Annu. Rev. Med. 64 249–263. 10.1146/annurev-med-060911-090007
    1. Kato H., Perl A. (2018). Blockade of Treg cell differentiation and function by the interleukin-21-mechanistic target of rapamycin axis via suppression of autophagy in patients with systemic lupus erythematosus. Arthritis Rheumatol. 70 427–438. 10.1002/art.40380
    1. Ke Z., Liang D., Zeng Q., Ren Q., Ma H., Gui L., et al. (2014). hsBAFF promotes proliferation and survival in cultured B lymphocytes via calcium signaling activation of mTOR pathway. Cytokine 62 310–321. 10.1016/j.cyto.2013.03.011
    1. Lai Z. W., Borsuk R., Shadakshari A., Yu J., Dawood M., Garcia R., et al. (2013). Mechanistic target of rapamycin activation triggers IL-4 production and necrotic death of double-negative T cells in patients with systemic lupus erythematosus. J. Immunol. 191 2236–2246. 10.4049/jimmunol.1301005
    1. Lai Z. W., Kelly R., Winans T., Marchena I., Shadakshari A., Yu J., et al. (2018). Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial. Lancet 391 1186–1196. 10.1016/S0140-6736(18)30485-9
    1. Lateef A., Petri M. (2012). Unmet medical needs in systemic lupus erythematosus. Arthritis Res. Ther. 14(Suppl. 4):S4. 10.1186/ar3919
    1. Leidl R. (2009). Preferences, quality of life and public health. Eur. J. Public Health 19 228–229. 10.1093/eurpub/ckp016
    1. Leonard D., Svenungsson E., Dahlqvist J., Alexsson A., Ärlestig L., Taylor K. E., et al. (2018). Novel gene variants associated with cardiovascular disease in systemic lupus erythematosus and rheumatoid arthritis. Ann. Rheum. Dis. 77 1063–1069. 10.1136/annrheumdis-2017-212614
    1. Liu Y. (2006). Rapamycin and chronic kidney disease: beyond the inhibition of inflammation. Kidney Int. 69 1925–1927. 10.1038/sj.ki.5001543
    1. Lomi C., Burckhardt C., Nordholm L., Bjelle A., Ekdahl C. (1995). Evaluation of a Swedish version of the arthritis self-efficacy scale in people with fibromyalgia. Scand. J. Rheumatol. 24 282–287. 10.3109/03009749509095164
    1. Lui S. L., Yung S., Tsang R., Chan K. W., Tam S., Chan T. M. (2008). Rapamycin prevents the development of nephritis in lupus-prone NZB/W F1 mice. Lupus 17 305–313. 10.1177/0961203307088289
    1. Marti H. P., Frey F. (2005). Nephrotoxicity of rapamycin – an emerging problem in clinical medicine. Nephrol. Dial. Transplant. 20 13–15. 10.1093/ndt/gfh639
    1. Oaks Z., Winans T., Huang N., Banki K., Perl A. (2016). Activation of the mechanistic target of rapamycin in SLE: explosion of evidence in the last five years. Curr. Rheumatol. Rep. 18 73. 10.1007/s11926-016-0622-8
    1. Perl A. (2016). Activation of mTOR (mechanistic target of rapamycin) in rheumatic disease. Nat. Rev. Rheumatol. 12 169–182. 10.1038/nrrheum.2015.172
    1. Scott D. L. (1993). A simple index to assess disease activity in rheumatoid arthritis. J. Rheumatol. 20 582–584.
    1. Takada T., Mikami A., Kitamura N., Seyama K., Inoue Y., Nagai K., et al. (2016). Efficacy and safety of long-term sirolimus therapy for asian patients with lymphangioleiomyomatosis. Ann. Am. Thorac. Soc. 13 1912–1922. 10.1513/AnnalsATS.201605-335OC
    1. Tan E. M., Cohen A. S., Fries J. F., Masi A. T., McShane D. J., Rothfield N. F., et al. (1982). The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25 1271–1277. 10.1002/art.1780251101
    1. Thomson A. W., Turnquist H. R., Raimondi G. (2009). Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 9 324–337. 10.1038/nri2546
    1. Uribe A. G., Vilá L. M., McGwin G., Jr., Sanchez M. L., Reveille J. D., Alarcón G. S. (2004). The systemic lupus activity measure-revised, the mexican systemic lupus erythematosus disease activity index (SLEDAI), and a modified SLEDAI-2K are adequate instruments to measure disease activity in systemic lupus erythematosus. J. Rheumatol. 31 1934–1940.
    1. Warner L. M., Adams L. M., Sehgal S. N. (1994). Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum. 37 289–297. 10.1002/art.1780370219
    1. Warner L. M., Cummons T., Nolan L., Sehgal S. N. (1995). Sub-therapeutic doses of sirolimus and cyclosporine A in combination reduce SLE pathogenesis in the MRL mouse. Inflamm. Res. 44(Suppl. 2) S205–S206. 10.1007/BF01778335
    1. Xiong Y., Yepuri G., Forbiteh M., Yu Y., Montani J. P., Yang Z., et al. (2014). ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis. Autophagy 10 2223–2238. 10.4161/15548627.2014.981789
    1. Yanik E. L., Siddiqui K., Engels E. A. (2015). Sirolimus effects on cancer incidence after kidney transplantation: a meta-analysis. Cancer Med. 4 1448–1459. 10.1002/cam4.487
    1. Yap D., Ma M. K., Tang C. S., Chan T. M. (2012). Proliferation signal inhibitors in the treatment of lupus nephritis: preliminary experience. Nephrology 17 676–680. 10.1111/j.1440-1797.2012.01646.x
    1. Yap D. Y. H., Tang C., Chan G. C. W., Kwan L. P. Y., Ma M. K. M., Mok M. M. Y., et al. (2018). Longterm data on sirolimus treatment in patients with lupus nephritis. J. Rheumatol. 45 1663–1670. 10.3899/jrheum.180507

Source: PubMed

3
Sottoscrivi