The Gut Microbiome Profile in Obesity: A Systematic Review

Olga Castaner, Albert Goday, Yong-Moon Park, Seung-Hwan Lee, Faidon Magkos, Sue-Anne Toh Ee Shiow, Helmut Schröder, Olga Castaner, Albert Goday, Yong-Moon Park, Seung-Hwan Lee, Faidon Magkos, Sue-Anne Toh Ee Shiow, Helmut Schröder

Abstract

Gut microbiome has been identified in the past decade as an important factor involved in obesity, but the magnitude of its contribution to obesity and its related comorbidities is still uncertain. Among the vast quantity of factors attributed to obesity, environmental, dietary, lifestyle, genetic, and others, the microbiome has aroused curiosity, and the scientific community has published many original articles. Most of the studies related to microbiome and obesity have been reported based on the associations between microbiota and obesity, and the in-depth study of the mechanisms related has been studied mainly in rodents and exceptionally in humans. Due to the quantity and diverse information published, the need of reviews is mandatory to recapitulate the relevant achievements. In this systematic review, we provide an overview of the current evidence on the association between intestinal microbiota and obesity. Additionally, we analyze the effects of an extreme weight loss intervention such as bariatric surgery on gut microbiota. The review is divided into 2 sections: first, the association of obesity and related metabolic disorders with different gut microbiome profiles, including metagenomics studies, and second, changes on gut microbiome after an extreme weight loss intervention such as bariatric surgery.

References

    1. Obesity and Overweight. Geneva: Fact sheet N°311, World Health Organization; 2015.
    1. NCD Risk Factor Collaboration (NCD-RisC) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. The Lancet. 2016;387(10026):1377–1396. doi: 10.1016/s0140-6736(16)30054-x.
    1. Pi-Sunyer F. X. The obesity epidemic: pathophysiology and consequences of obesity. Obesity Research. 2002;10(S12):97S–104S. doi: 10.1038/oby.2002.202.
    1. Di Angelantonio E., Bhupathiraju S. N., Wormser D., et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. The Lancet. 2016;388(10046):776–786. doi: 10.1016/S0140-6736(16)30175-1.
    1. Kopelman P. G. Obesity as a medical problem. Nature. 2000;404(6778):635–643. doi: 10.1038/35007508.
    1. Baothman O. A., Zamzami M. A., Taher I., Abubaker J., Abu-Farha M. The role of gut microbiota in the development of obesity and diabetes. Lipids in Health and Disease. 2016;15(1):p. 108. doi: 10.1186/s12944-016-0278-4.
    1. Sekirov I., Russell S. L., Antunes L. C. M., Finlay B. B. Gut microbiota in health and disease. Physiological Reviews. 2010;90(3):859–904. doi: 10.1152/physrev.00045.2009.
    1. Cani P. D., Osto M., Geurts L., Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3(4):279–288. doi: 10.4161/gmic.19625.
    1. Qin J., MetaHIT Consortium, Li R., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi: 10.1038/nature08821.
    1. Tang W. H. W., Kitai T., Hazen S. L. Gut microbiota in cardiovascular health and disease. Circulation Research. 2017;120(7):1183–1196. doi: 10.1161/CIRCRESAHA.117.309715.
    1. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–1023. doi: 10.1038/4441022a.
    1. Ley R. E., Bäckhed F., Turnbaugh P. J., Lozupone C. A., Knight R. D., Gordon J. I. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(31):11070–11075. doi: 10.1073/pnas.0504978102.
    1. Karlsson F. H., Tremaroli V., Nookaew I., et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103. doi: 10.1038/nature12198.
    1. Schwiertz A., Taras D., Schäfer K. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18(1):190–195. doi: 10.1038/oby.2009.167.
    1. Murphy E. F., Cotter P. D., Healy S., et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010;59(12):1635–1642. doi: 10.1136/gut.2010.215665.
    1. Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–1131. doi: 10.1038/nature05414.
    1. Khanna S., Tosh P. K. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clinic Proceedings. 2014;89(1):107–114. doi: 10.1016/j.mayocp.2013.10.011.
    1. Duncan S. H., Lobley G. E., Holtrop G., et al. Human colonic microbiota associated with diet, obesity and weight loss. International Journal of Obesity. 2008;32(11):1720–1724. doi: 10.1038/ijo.2008.155.
    1. Dave M., Higgins P. D., Middha S., Rioux K. P. The human gut microbiome: current knowledge, challenges, and future directions. Translational Research. 2012;160(4):246–257. doi: 10.1016/j.trsl.2012.05.003.
    1. Anhê F. F., Varin T. V., Schertzer J. D., Marette A. The gut microbiota as a mediator of metabolic benefits after bariatric surgery. Canadian Journal of Diabetes. 2017;41(4):439–447. doi: 10.1016/j.jcjd.2017.02.002.
    1. Seganfredo F. B., Blume C. A., Moehlecke M., et al. Weight-loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obesity Reviews. 2017;18(8):832–851. doi: 10.1111/obr.12541.
    1. Kasai C., Sugimoto K., Moritani I., et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterology. 2015;15(1):p. 100. doi: 10.1186/s12876-015-0330-2.
    1. Million M., Maraninchi M., Henry M., et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii . International Journal of Obesity. 2012;36(6):817–825. doi: 10.1038/ijo.2011.153.
    1. Haro C., Rangel-Zúñiga O. A., Alcalá-Díaz J. F., et al. Intestinal microbiota is influenced by gender and body mass index. PLoS One. 2016;11(5, article e0154090) doi: 10.1371/journal.pone.0154090.
    1. Lin S. W., Freedman N. D., Shi J., et al. Beta-diversity metrics of the upper digestive tract microbiome are associated with body mass index. Obesity. 2015;23(4):862–869. doi: 10.1002/oby.21020.
    1. Angelakis E., Armougom F., Carrière F., et al. A metagenomic investigation of the duodenal microbiota reveals links with obesity. PLoS One. 2015;10(9, article e0137784) doi: 10.1371/journal.pone.0137784.
    1. Finucane M. M., Sharpton T. J., Laurent T. J., Pollard K. S. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One. 2014;9(1, article e84689) doi: 10.1371/journal.pone.0084689.
    1. Turnbaugh P. J., Hamady M., Yatsunenko T., et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–484. doi: 10.1038/nature07540.
    1. Tremaroli V., Karlsson F., Werling M., et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metabolism. 2015;22(2):228–238. doi: 10.1016/j.cmet.2015.07.009.
    1. Goodrich J. K., Waters J. L., Poole A. C., et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–799. doi: 10.1016/j.cell.2014.09.053.
    1. Murugesan S., Ulloa-Martínez M., Martínez-Rojano H., et al. Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. European Journal of Clinical Microbiology and Infectious Diseases. 2015;34(7):1337–1346. doi: 10.1007/s10096-015-2355-4.
    1. Ignacio A., Fernandes M. R., Rodrigues V. A. A., et al. Correlation between body mass index and faecal microbiota from children. Clinical Microbiology and Infection. 2016;22(3):258.e1–258.e8. doi: 10.1016/j.cmi.2015.10.031.
    1. Hu H.-J., Park S.-G., Jang H. B., et al. Obesity alters the microbial community profile in Korean adolescents. PLoS One. 2015;10(7, article e0134333) doi: 10.1371/journal.pone.0134333.
    1. Damms-Machado A., Mitra S., Schollenberger A. E., et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. BioMed Research International. 2015;2015:12. doi: 10.1155/2015/806248.806248
    1. Bondia-Pons I., Maukonen J., Mattila I., et al. Metabolome and fecal microbiota in monozygotic twin pairs discordant for weight: a Big Mac challenge. The FASEB Journal. 2014;28(9):4169–4179. doi: 10.1096/fj.14-250167.
    1. Palleja A., Kashani A., Allin K. H., et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Medicine. 2016;8(1):p. 67. doi: 10.1186/s13073-016-0312-1.
    1. Graessler J., Qin Y., Zhong H., et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. The Pharmacogenomics Journal. 2013;l13(6):514–522. doi: 10.1038/tpj.2012.43.

Source: PubMed

3
Sottoscrivi