Insulin Therapy of Nondiabetic Septic Patients Is Predicted by para-Tyrosine/Phenylalanine Ratio and by Hydroxyl Radical-Derived Products of Phenylalanine

Szilárd Kun, Gergő A Molnár, Eszter Sélley, Lívia Szélig, Lajos Bogár, Csaba Csontos, Attila Miseta, István Wittmann, Szilárd Kun, Gergő A Molnár, Eszter Sélley, Lívia Szélig, Lajos Bogár, Csaba Csontos, Attila Miseta, István Wittmann

Abstract

Hydroxyl radical converts Phe to para-, meta-, and ortho-Tyr (p-Tyr, m-Tyr, o-Tyr), while Phe is converted enzymatically to p-Tyr in the kidney and could serve as substrate for gluconeogenesis. Pathological isoforms m- and o-Tyr are supposed to be involved in development of hormone resistances. Role of Phe and the three Tyr isoforms in influencing insulin need was examined in 25 nondiabetic septic patients. Daily insulin dose (DID) and insulin-glucose product (IGP) were calculated. Serum and urinary levels of Phe and Tyr isoforms were determined using a rpHPLC-method. Urinary m-Tyr/p-Tyr ratio was higher in patients with DID and IGP over median compared to those below median (P = 0.005 and P = 0.01, resp.). Urinary m-Tyr and m-Tyr/p-Tyr ratio showed positive correlation with DID (P = 0.009 and P = 0.023, resp.) and with IGP (P = 0.004 and P = 0.008, resp.). Serum Phe was a negative predictor, while serum p-Tyr/Phe ratio was positive predictor of both DID and IGP. Urinary m-Tyr and urinary m-Tyr/p-Tyr, o-Tyr/p-Tyr, and (m-Tyr+o-Tyr)/p-Tyr ratios were positive predictors of both DID and IGP. Phe and Tyr isoforms have a predictive role in carbohydrate metabolism of nondiabetic septic patients. Phe may serve as substrate for renal gluconeogenesis via enzymatically produced p-Tyr, while hydroxyl radical derived Phe products may interfere with insulin action.

Figures

Figure 1
Figure 1
Chromatograms of a standard (STD), a serum (SE), and a urine sample of a septic patient (U). p-Tyr, para-tyrosine; m-Tyr, meta-tyrosine; o-Tyr, ortho-tyrosine; Phe, phenylalanine.
Figure 2
Figure 2
Urinary m-Tyr/p-Tyr ratio in septic patients requiring insulin administration, according to (a) daily insulin dose or (b) insulin-glucose product. #P = 0.005 versus DID < median; ##P = 0.01 versus IGP < median. DID, daily insulin dose; IGP, insulin-glucose product.
Figure 3
Figure 3
Correlation of urinary m-Tyr concentration with (a) DID and (c) IGP. Correlation of urinary m-Tyr/p-Tyr ratio with (b) DID and (d) IGP in septic patients requiring insulin administration. DID, daily insulin dose; IGP, insulin-glucose product.

References

    1. Stumvoll M., Chintalapudi U., Perriello G., Welle S., Gutierrez O., Gerich J. Uptake and release of glucose by the human kidney: postabsorptive rates and responses to epinephrine. The Journal of Clinical Investigation. 1995;96(5):2528–2533. doi: 10.1172/jci118314.
    1. Meyer C., Nadkarni V., Stumvoll M., Gerich J. Human kidney free fatty acid and glucose uptake: evidence for a renal glucose-fatty acid cycle. American Journal of Physiology: Endocrinology and Metabolism. 1997;273(3):E650–E654.
    1. Davidson M. B., Peters A. L. An overview of metformin in the treatment of type 2 diabetes mellitus. American Journal of Medicine. 1997;102(1):99–110. doi: 10.1016/S0002-9343(96)00353-1.
    1. Meyer C., Stumvoll M., Nadkarni V., Dostou J., Mitrakou A., Gerich J. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. The Journal of Clinical Investigation. 1998;102(3):619–624. doi: 10.1172/jci2415.
    1. Meyer C., Stumvoll M., Welle S., Woerle H. J., Haymond M., Gerich J. Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans. American Journal of Physiology: Endocrinology and Metabolism. 2003;285(4):E819–E826. doi: 10.1152/ajpendo.00145.2003.
    1. Meyer C., Dostou J., Nadkarni V., Gerich J. Effects of physiological hyperinsulinemia on systemic, renal and hepatic substrate metabolism. The American Journal of Physiology—Renal Physiology. 1998;275(6):F915–F921.
    1. Cersosimo E., Garlick P., Ferretti J. Insulin regulation of renal glucose metabolism in humans. American Journal of Physiology—Endocrinology and Metabolism. 1999;276(1):E78–E84.
    1. Wang Y., DeMayo J. L., Hahn T. M., et al. Tissue- and development-specific expression of the human phenylalanine hydroxylase/chloramphenicol acetyltransferase fusion gene in transgenic mice. The Journal of Biological Chemistry. 1992;267(21):15105–15110.
    1. Rao D. N., Kaufman S. Purification and state of activation of rat kidney phenylalanine hydroxylase. Journal of Biological Chemistry. 1986;261(19):8866–8876.
    1. Crimi E., Sica V., Slutsky A. S., et al. Role of oxidative stress in experimental sepsis and multisystem organ dysfunction. Free Radical Research. 2006;40(7):665–672. doi: 10.1080/10715760600669612.
    1. Mühl D., Woth G., Drenkovics L., et al. Comparison of oxidative stress & leukocyte activation in patients with severe sepsis & burn injury. Indian Journal of Medical Research. 2011;134(7):69–78.
    1. Ware L. B., Fessel J. P., May A. K., Roberts L. J. Plasma biomarkers of oxidant stress and development of organ failure in severe sepsis. Shock. 2011;36(1):12–17. doi: 10.1097/SHK.0b013e318217025a.
    1. Stadtman E. R., Berlett B. S. Fenton chemistry: amino acid oxidation. The Journal of Biological Chemistry. 1991;266(26):17201–17211.
    1. Galano A., Cruz-Torres A. OH radical reactions with phenylalanine in free and peptide forms. Organic and Biomolecular Chemistry. 2008;6(4):732–738. doi: 10.1039/b716024k.
    1. Ayling J. E., Pirson W. D., Al-Janabi J. M., Helfand G. D. Kidney phenylalanine hydroxylase from man and rat. Comparison with the liver enzyme. Biochemistry. 1974;13(1):78–85. doi: 10.1021/bi00698a013.
    1. Lubec B., Hayn M., Denk W., Bauer G. Brain lipid peroxidation and hydroxy radical attack following the intravenous infusion of hydrogen peroxide in an infant. Free Radical Biology and Medicine. 1996;21(2):219–223. doi: 10.1016/0891-5849(96)00018-4.
    1. Dandona P., Mohanty P., Hamouda W., et al. Rapid communication: inhibitory effect of a two day fast on reactive oxygen species (ROS) generation by leucocytes and plasma ortho-tyrosine and meta-tyrosine concentrations. Journal of Clinical Endocrinology and Metabolism. 2001;86(6):2899–2902. doi: 10.1210/jc.86.6.2899.
    1. Jörres R. A., Holz O., Zachgo W., et al. The effect of repeated ozone exposures on inflammatory markers in bronchoalveolar lavage fluid and mucosal biopsies. The American Journal of Respiratory and Critical Care Medicine. 2000;161(6):1855–1861. doi: 10.1164/ajrccm.161.6.9908102.
    1. Molnár G. A., Wagner Z., Markó L., et al. Urinary ortho-tyrosine excretion in diabetes mellitus and renal failure: evidence for hydroxyl radical production. Kidney International. 2005;68(5):2281–2287. doi: 10.1111/j.1523-1755.2005.00687.x.
    1. Toth P., Koller A., Pusch G., et al. Microalbuminuria, indicated by total versus immunoreactive urinary albumins, in acute ischemic stroke patients. Journal of Stroke and Cerebrovascular Diseases. 2011;20(6):510–516. doi: 10.1016/j.jstrokecerebrovasdis.2010.03.002.
    1. Molnár G. A., Nemes V., Biró Z., Ludány A., Wagner Z., Wittmann I. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase. Free Radical Research. 2005;39(12):1359–1366. doi: 10.1080/10715760500307107.
    1. Szijártó I. A., Molnár G. A., Mikolás E., et al. Increase in insulin-induced relaxation of consecutive arterial segments toward the periphery: role of vascular oxidative state. Free Radical Research. 2014;48(7):749–757. doi: 10.3109/10715762.2014.904507.
    1. Kun S., Mikolás E., Molnár G. A., et al. Association of plasma ortho-tyrosine/para-tyrosine ratio with responsiveness of erythropoiesis-stimulating agent in dialyzed patients. Redox Report. 2014;48:749–757.
    1. Mikolás E., Kun S., Laczy B., et al. Incorporation of ortho- and meta-tyrosine into cellular proteins leads to erythropoietin-resistance in an erythroid cell line. Kidney & Blood Pressure Research. 2014;38(2-3):217–225. doi: 10.1159/000355770.
    1. Levy M. M., Fink M. P., Marshall J. C., et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Critical Care Medicine. 2003;31(4):1250–1256. doi: 10.1097/01.ccm.0000050454.01978.3b.
    1. Dellinger R. P., Levy M. M., Rhodes A., et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock 2012. Intensive Care Medicine. 2013;39(2):165–228. doi: 10.1007/s00134-012-2769-8.
    1. Würtz P., Soininen P., Kangas A. J., et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013;36(3):648–655. doi: 10.2337/dc12-0895.

Source: PubMed

3
Sottoscrivi