The Effect of Body Mass Index on Brain Volume and Cognitive Function in Relapsing-Remitting Multiple sclerosis: A CombiRx Secondary Analysis

Aliza Bitton Ben-Zacharia, Malvin N Janal, Abraham A Brody, Jerry Wolinsky, Fred Lublin, Gary Cutter, Aliza Bitton Ben-Zacharia, Malvin N Janal, Abraham A Brody, Jerry Wolinsky, Fred Lublin, Gary Cutter

Abstract

Background: Multiple sclerosis (MS) is an autoimmune disease leading to physical, emotional and cognitive disability. High body mass index (BMI) may impact cognitive function and brain volume in MS. Yet, there is paucity of evidence addressing the impact of BMI on cognitive function and brain volume in MS.

Objectives: The purpose of this study was to examine the effects of BMI on normal appearing brain volume and cognitive function in patients with relapsing-remitting MS.

Methods: A secondary data analysis of the NIH CombiRx study was conducted. Multivariate regression and mixed model analyses were executed to analyze the effect of BMI on brain volume and cognitive function.

Results: The mean baseline age of the 768 participants was 38.2(SD = 9.4) years. 73% were female and 88.8% were Caucasian. The mean BMI was 28.8 kg/m2(SD = 6.7). The multivariate regression and mixed model analyses failed to show a clinical effect of BMI on brain volume and cognitive function.

Conclusion: BMI did not show an effect on cognitive function and brain volume among MS patients. Although there is increased interest in the effects of modifiable factors on the course of MS, the effects of BMI on brain volume and cognitive function are debatable and warrant further research.ClinicalTrials.gov NCT00211887.

Keywords: MRI; Multiple sclerosis; RRMS; brain volume; cognition; outcome measurements.

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

© The Author(s) 2021.

Figures

Figure 1.
Figure 1.
Predicted gray matter volume in 3 BMI groups over 3 years.

References

    1. Kurtzke JF. Epidemiology in multiple sclerosis: a pilgrim’s progress. Brain. 2013;136(9):2904-2917. doi:10.1093/brain/awt220.
    1. Tullman MJ. Overview of the epidemiology, diagnosis, and disease progression associated with multiple sclerosis. Am J Manag Care. 2013;19:S15-S20.
    1. Langer-Gould A, Sonu MB, Beaber BE, Koebnick C, Childhood obesity and risk of pediatric multiple sclerosis and clinically isolated syndrome. Neurology. 2013;80(6):548-552. doi:10.1212/WNL.0b013e31828154f3.
    1. Sibon I, de Toffol B, Azulay J-P, Thomas-Antérion C, Leger J-M. [American academy of neurology, Washington, 18-25 April 2015]. Rev Neurol. 2015;171(6-7):581-601. doi:10.1016/j.neurol.2015.04.005.
    1. Khurana SR, Bamer A, Turner AP, et al.. The prevalence of overweight and obesity in veterans with multiple sclerosis. Am J Phys Med Rehabil. 2009;88(2):83-91. doi:10.1097/PHM.0b013e318194f8b5.
    1. Munger KL, Chitnis T, Ascherio A. Body size and risk of MS in two cohorts of US women. Neurology. 2009;73(19):1543-1550. doi:10.1212/WNL.0b013e3181c0d6e0.
    1. Gunstad J, et al.. Relationship between body mass index and brain volume in healthy adults. Int J Neurosci. 2008;118(11):1582-1593. doi:10.1080/00207450701392282.
    1. Yokum S, Ng J, Stice E. Relation of regional gray and white matter volumes to current BMI and future increases in BMI: a prospective MRI study. Int J Obes. 2012;36(5):656-664. doi:10.1038/ijo.2011.175.
    1. Benedict RH, Carone DA, Bakshi R. Correlating brain atrophy with cognitive dysfunction, mood disturbances, and personality disorder in multiple sclerosis. J Neuroimaging. 2004;14:36S-45S. doi:10.1177/1051228404266267.
    1. Lazeron RH, Schouten M, Uitdehagg BML, et al.. Brain atrophy and lesion load as explaining parameters for cognitive impairment in multiple sclerosis. Mult Scler J. 2005;11(5):524-531. doi:10.1191/1352458505ms1201oa.
    1. Bove R, Secor E, Healy BC, et al.. Evaluation of an online platform for multiple sclerosis research: patient description, validation of severity scale, and exploration of BMI effects on disease course. PloS One. 2013;8(3):e59707. doi:10.1371/journal.pone.0059707.
    1. Cambil-Martín J, Galiano-Castillo N, Muñoz-Hellín E, et al.. Influence of body mass index on psychological and functional outcomes in patients with multiple sclerosis: a cross-sectional study. Nutr Neurosci. 2016;19(2):79-85. doi:10.1179/1476830514Y.0000000156.
    1. Castro K, et al.. Body mass index in multiple sclerosis modulates ceramide-induced DNA methylation and disease course. EBioMedicine. 2019;43:392-410. doi:10.1016/j.ebiom.2019.03.087.
    1. Charvet L, Ntranos A, Amatruda M, et al.. The Montreal cognitive assessment (MoCA) in multiple sclerosis: relation to clinical features. J Mult Scler. 2015;2(135):2376-0389.1000135. doi:10.4172/2376-0389.1000135.
    1. Kappus N, Weinstock-Guttman B, Hagemeier J, et al.. Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatr. 2016;87(2):181-187. doi:10.1136/jnnp-2014-310051.
    1. Mowry EM, Azevedo CJ, McCulloch CE, et al.. Body mass index, but not vitamin D status, is associated with brain volume change in MS. Neurology. 2018;91(24):e2256-e2264. doi:10.1212/WNL.0000000000006644.
    1. Owji M, Ashraf-Ganjouei A, Sahraian MA, et al.. The relationship between cognitive function and body mass index in multiple sclerosis patients. Mult Scler Relat Disord. 2019;32:37-40. doi:10.1016/j.msard.2019.04.024.
    1. Sandroff BM, Hubbard EA. No association between body composition and cognition in ambulatory persons with multiple sclerosis: a brief report. J Rehabil Res Dev. 2015;52(3):301. doi:10.1682/JRRD.2014.09.0208.
    1. Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol. 2009;60:173-196. doi:10.1146/annurev.psych.59.103006.093656.
    1. Reuter-Lorenz PA, Park DC. How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychol Rev. 2014;24(3):355-370. doi:10.1007/s11065-014-9270-9.
    1. Lindsey J, Scott T, Lynch S, et al.. The CombiRx trial of combined therapy with interferon and glatiramer cetate in relapsing remitting MS: Design and baseline characteristics. Mult Scler Relat Disord. 2012;1(2):81-86. doi:10.1016/j.msard.2012.01.006.
    1. Lublin FD, Cofield SS, Cutter GR, et al.. Randomized study combining interferon and glatiramer acetate in multiple sclerosis. Ann Neurol. 2013;73(3):327-340. doi:10.1002/ana.23863.
    1. Released IBM Corp . IBM SPSS Statistics for Windows, Version 23, Armonk NY IBM Corp. 2015. Available from: .
    1. Lublin F, Cofield S, Cutter G, et al.. EDSS Changes in CombiRx: Blinded, 7-Year Extension Results for Progression and Improvement (P04. 121). AAN Enterprises; 2013.
    1. Lublin F, Cofield S, Cutter G, et al.. Relapse Activity in the CombiRx Trial: Blinded, 7-Year Extension Results (S01. 002). AAN Enterprises; 2013.
    1. Griffin CM, Chard DT, Parker GJM, et al.. The relationship between lesion and normal appearing brain tissue abnormalities in early relapsing remitting multiple sclerosis. J Neurol. 2002;249(2):193-199. doi:10.1007/pl00007864.
    1. Vrenken H, Pouwels PJW, Geurts JJG, et al.. Altered diffusion tensor in multiple sclerosis normal-appearing brain tissue: cortical diffusion changes seem related to clinical deterioration. J Magn Reson Imag. 2006;23(5):628-636. doi:10.1002/jmri.20564.
    1. Datta S, Staewen TD, Cofield SS, et al.. Regional gray matter atrophy in relapsing remitting multiple sclerosis: baseline analysis of multi-center data. Mult Scler Relat Disord. 2015;4(2):124-136. doi:10.1016/j.msard.2015.01.004.
    1. Narayana PA, Govindarajan KA, Goel P, et al.. Regional cortical thickness in relapsing remitting multiple sclerosis: A multi-center study. Neuroimage: Clinic. 2013;2:120-131. doi:10.1016/j.nicl.2012.11.009.
    1. Mathias CW, Stanford MS, Houston RJ. The physiological experience of the paced auditory serial addition task (PASAT): does the PASAT induce autonomic arousal? Arch Clin Neuropsychol. 2004;19(4):543-554. doi:10.1016/j.acn.2003.08.001.
    1. Tombaugh TN. A comprehensive review of the paced auditory serial addition test (PASAT). Arch Clin Neuropsychol. 2006;21(1):53-76. doi:10.1016/j.acn.2005.07.006.
    1. Scarpazza C, Braghittoni D, Casale B, et al.. Education protects against cognitive changes associated with multiple sclerosis. Restor Neurol Neurosci. 2013;31(5):619-631. doi:10.3233/rnn-120261.
    1. Ionescu P, Petrescue S, Sandu E, et al.;. P.5.c.001 Cognitive impairment in multiple sclerosis: methods of assessment and correlation with physical disability. European Neuropsychology 2011. doi:10.1016/S0924-977X(11)70897-5.
    1. Haltia LT, Viljanen A, Parkkola R, et al.. Brain white matter expansion in human obesity and the recovering effect of dieting. J Clin Endocrinol Metabol. 2007;92(8):3278-3284. doi:10.1210/jc.2006-2495.
    1. Pannacciulli N, Parigi AD, Chen K, et al.. Brain abnormalities in human obesity: a voxel-based morphometric study. Neuroimage. 2006;31(4):1419-1425. doi:10.1016/j.neuroimage.2006.01.047.
    1. Galioto R, Conway DS, Planchon SM, et al.. Is obesity related to processing speed impairment in patients with multiple sclerosis: results of a large-scale, multicenter study. Arch Clin Neuropsychol. 2020;35(5):506-510. doi:10.1093/arclin/acaa003.

Source: PubMed

3
Sottoscrivi