Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus

Kailang Wu, Guiqing Peng, Matthew Wilken, Robert J Geraghty, Fang Li, Kailang Wu, Guiqing Peng, Matthew Wilken, Robert J Geraghty, Fang Li

Abstract

The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional, and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals.

Figures

FIGURE 1.
FIGURE 1.
Interface between SARS-CoV RBD and hACE2.A, list of mutations in the RBMs of various SARS-CoV strains. Five representative existent strains and two predicted future strains are defined in the Introduction.B, overall structure of the hTor02 RBD-hACE2 complex (Protein Data Bank code 2AJF). hACE2 is in green, and hTor02 RBD is incyan (core) and red (RBM). RBM residues that underwent mutations are displayed.C, detailed structure of the hTor02 RBD/hACE2 interface. hACE2 residues are ingreen, SARS-CoV residues that underwent mutations are in magenta, and SARS-CoV residues that played significant roles in the mutations are incyan.
FIGURE 2.
FIGURE 2.
Structures and functions of two virus-binding hot spots on hACE2.A, surface plasmon resonance Biacore analysis of the binding interactions between hTor02 RBD and wild-type or mutant hACE2. hTor02 RBD was immobilized, and wild-type or mutant ACE2 was flowed through. Each experiment was repeated six times at three different protein concentrations. The corresponding S.E. values are shown. B, pseudotyped viral infection assays of the interactions between hTor02 spike protein and wild-type or mutant hACE2. Retroviral murine leukemia viruses expressing β-galactosidase and pseudotyped with hTor02 spike protein were used to infect HEK293T cells expressing wild-type or mutant hACE2. Infection efficiency of pseudotyped viruses was measured by β-galactosidase assays and normalized against the infection efficiency in cells expressing wild-type hACE2. Each experiment was repeated six times. The corresponding S.E. values are shown. C, use of a human-civet chimeric ACE2 in crystallographic studies of RBD/cACE2 interactions. The chimeric ACE2 contains SARS-CoV-binding residues from cACE2 and other residues from hACE2. The chimeric ACE2 has the same receptor activities as cACE2 but the same crystallographic activities as hACE2 (27). SARS-CoV-binding residues that differ between hACE2 and cACE2 are shown. D, structure of the interface between hTor02 RBD and the chimeric ACE2.
FIGURE 3.
FIGURE 3.
Molecular mechanisms of RBM mutations in SARS-CoV.A, surface plasmon resonance Biacore analysis of the binding interactions between hACE2 and wild-type or mutant hTor02 RBD. hACE2 was immobilized, and wild-type or mutant hTor02 RBD was flowed through. B, surface plasmon resonance Biacore analysis of the binding interactions between cACE2 and wild-type or mutant hTor02 RBD. cACE2 was immobilized, and wild-type or mutant hTor02 RBD was flowed through. C, pseudotyped viral infection assays of the interactions between different spike proteins and hACE2. D, pseudotyped viral infection assays of the interactions between different spike proteins and cACE2.
FIGURE 4.
FIGURE 4.
Structural mechanisms of RBM mutations in SARS-CoV.A, structure of the interface between hACE2 and hOptimize RBD. B, structure of the interface between the chimeric ACE2 and cOptimize RBD. C, structure of the interface between hACE2 and cOptimize RBD.D, superimposed structures of the interfaces between the chimeric ACE2 and cOptimize RBD (colored) and between hACE2 and hTor02 (white).
FIGURE 5.
FIGURE 5.
Summary of host receptor adaptation by SARS-CoV.Listed are adaptations of RBM residues to hACE2 or cACE2.Arrows point from less well adapted residues to better adapted residues. Double arrows connect equally well adapted residues.

References

    1. Lee N., Hui D., Wu A., Chan P., Cameron P., Joynt G. M., Ahuja A., Yung M. Y., Leung C. B., To K. F., Lui S. F., Szeto C. C., Chung S., Sung J. J. (2003) A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348, 1986–1994
    1. Yu I. T., Li Y.., Wong T. W., Tam W., Chan A. T., Lee J. H., Leung D. Y., Ho T. (2004) Evidence of airborne transmission of the severe acute respiratory syndrome virus. N. Engl. J. Med. 350, 1731–1739
    1. Marra M. A., Jones S. J., Astell C. R., Holt R. A., Brooks-Wilson A., Butterfield Y. S., Khattra J., Asano J. K., Barber S. A., Chan S. Y., Cloutier A., Coughlin S. M., Freeman D., Girn N., Griffith O. L., Leach S. R., Mayo M., McDonald H., Montgomery S. B., Pandoh P. K., Petrescu A. S., Robertson A. G., Schein J. E., Siddiqui A., Smailus D. E., Stott J. M., Yang G. S., Plummer F., Andonov A., Artsob H., Bastien N., Bernard K., Booth T. F., Bowness D., Czub M., Drebot M., Fernando L., Flick R., Garbutt M., Gray M., Grolla A., Jones S., Feldmann H., Meyers A., Kabani A., Li Y., Normand S., Stroher U., Tipples G. A., Tyler S., Vogrig R., Ward D., Watson B., Brunham R. C., Krajden M., Petric M., Skowronski D. M., Upton C., Roper R. L. (2003) The genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404
    1. Peiris J. S., Lai S. T., Poon L. L., Guan Y., Yam L. Y., Lim W., Nicholls J., Yee W. K., Yan W. W., Cheung M. T., Cheng V. C., Chan K. H., Tsang D. N., Yung R. W., Ng T. K., Yuen K. Y. (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325
    1. Guan Y., Zheng B. J., He Y. Q., Liu X. L., Zhuang Z. X., Cheung C. L., Luo S. W., Li P. H., Zhang L. J., Guan Y. J., Butt K. M., Wong K. L., Chan K. W., Lim W., Shortridge K. F., Yuen K. Y., Peiris J. S., Poon L. L. (2003) Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278
    1. Liang G., Chen Q., Xu J., Liu Y., Lim W., Peiris J. S., Anderson L. J., Ruan L., Li H., Kan B., Di B., Cheng P., Chan K. H., Erdman D. D., Gu S., Yan X., Liang W., Zhou D., Haynes L., Duan S., Zhang X., Zheng H., Gao Y., Tong S., Li D., Fang L., Qin P., Xu W., and SARS Diagnosis Working Group (2004) Laboratory diagnosis of four recent sporadic cases of community-acquired SARS, Guangdong Province, China. Emerging Infectious Diseases 10, 1774–1781
    1. Song H. D., Tu C. C., Zhang G. W., Wang S. Y., Zheng K., Lei L. C., Chen Q. X., Gao Y. W., Zhou H. Q., Xiang H., Zheng H. J., Chern S. W., Cheng F., Pan C. M., Xuan H., Chen S. J., Luo H. M., Zhou D. H., Liu Y. F., He J. F., Qin P. Z., Li L. H., Ren Y. Q., Liang W. J., Yu Y. D., Anderson L., Wang M., Xu R. H., Wu X. W., Zheng H. Y., Chen J. D., Liang G., Gao Y., Liao M., Fang L., Jiang L. Y., Li H., Chen F., Di B., He L. J., Lin J. Y., Tong S., Kong X., Du L., Hao P., Tang H., Bernini A., Yu X. J., Spiga O., Guo Z. M., Pan H. Y., He W. Z., Manuguerra J. C., Fontanet A., Danchin A., Niccolai N., Li Y. X., Wu C. I., Zhao G. P. (2005) Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc. Natl. Acad. Sci. U.S.A. 102, 2430–2435
    1. Chinese SARS Molecular Epidemiology Consortium (2004) Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666–1669
    1. Liu L., Fang Q., Deng F., Wang H., Yi C. E., Ba L., Yu W., Lin R. D., Li T., Hu Z., Ho D. D., Zhang L., Chen Z. (2007) Natural mutations in the receptor-binding domain of spike glycoprotein determine the reactivity of cross-neutralization between palm civet coronavirus and severe acute respiratory syndrome coronavirus. J. Virol. 81, 4694–4700
    1. Sheahan T., Rockx B., Donaldson E., Sims A., Pickles R., Corti D., Baric R. (2008) Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium. J. Virol. 82, 2274–2285
    1. Li W., Wong S. K., Li F., Kuhn J. H., Huang I. C., Choe H., Farzan M. (2006) Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J. Virol. 80, 4211–4219
    1. Kan B., Wang M., Jing H., Xu H., Jiang X., Yan M., Liang W., Zheng H., Wan K., Liu Q., Cui B., Xu Y., Zhang E., Wang H., Ye J., Li G., Li M., Cui Z., Qi X., Chen K., Du L., Gao K., Zhao Y. T., Zou X. Z., Feng Y. J., Gao Y. F., Hai R., Yu D., Guan Y., Xu J. (2005) Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol. 79, 11892–11900
    1. Lau S. K., Woo P. C., Li K. S., Huang Y., Tsoi H. W., Wong B. H., Wong S. S., Leung S. Y., Chan K. H., Yuen K. Y. (2005) Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. U.S.A. 102, 14040–14045
    1. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J. H., Wang H., Crameri G., Hu Z., Zhang H., Zhang J., McEachern J., Field H., Daszak P., Eaton B. T., Zhang S., Wang L. F. (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679
    1. Ren W., Qu X., Li W., Han Z., Yu M., Zhou P., Zhang S. Y., Wang L. F., Deng H., Shi Z. (2008) Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. J. Virol. 82, 1899–1907
    1. Li W., Moore M. J., Vasilieva N., Sui J., Wong S. K., Berne M. A., Somasundaran M., Sullivan J. L., Luzuriaga K., Greenough T. C., Choe H., Farzan M. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454
    1. Li F., Berardi M., Li W., Farzan M., Dormitzer P. R., Harrison S. C. (2006) Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J. Virol. 80, 6794–6800
    1. Lai M. M., Holmes K. V. (2001) in Fields Virology (Knipe D. M., Howley P. M., eds) pp. 1163–1186, Lippincott Williams & Wilkins, Philadelphia, PA
    1. Xu Y., Lou Z., Liu Y., Pang H., Tien P., Gao G. F., Rao Z. (2004) Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J. Biol. Chem. 279, 49414–49419
    1. Babcock G. J., Esshaki D. J., Thomas W. D., Jr., Ambrosino D. M. (2004) Amino acids 270–510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J. Virol. 78, 4552–4560
    1. Wong S. K., Li W., Moore M. J., Choe H., Farzan M. (2004) A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 279, 3197–3201
    1. Xiao X., Chakraborti S., Dimitrov A. S., Gramatikoff K., Dimitrov D. S. (2003) The SARS-CoV S glycoprotein: expression and functional characterization. Biochem. Biophys. Res. Commun. 312, 1159–1164
    1. Li W., Greenough T. C., Moore M. J., Vasilieva N., Somasundaran M., Sullivan J. L., Farzan M., Choe H. (2004) Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2. J. Virol. 78, 11429–11433
    1. Li W., Zhang C., Sui J., Kuhn J. H., Moore M. J., Luo S., Wong S. K., Huang I. C., Xu K., Vasilieva N., Murakami A., He Y., Marasco W. A., Guan Y., Choe H., Farzan M. (2005) Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24, 1634–1643
    1. McCray P. B., Jr., Pewe L., Wohlford-Lenane C., Hickey M., Manzel L., Shi L., Netland J., Jia H. P., Halabi C., Sigmund C. D., Meyerholz D. K., Kirby P., Look D. C., Perlman S. (2007) Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821
    1. Li F., Li W., Farzan M., Harrison S. C. (2005) Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309, 1864–1868
    1. Li F. (2008) Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J. Virol. 82, 6984–6991
    1. Qu X. X., Hao P., Song X. J., Jiang S. M., Liu Y. X., Wang P. G., Rao X., Song H. D., Wang S. Y., Zuo Y., Zheng A. H., Luo M., Wang H. L., Deng F., Wang H. Z., Hu Z. H., Ding M. X., Zhao G. P., Deng H. K. (2005) Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. J. Biol. Chem. 280, 29588–29595
    1. Wu K., Chen L., Peng G., Zhou W., Pennell C. A., Mansky L. M., Geraghty R. J., Li F. (2011) A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses. J. Virol. 85, 5331–5337
    1. Wu K., Li W., Peng G., Li F. (2009) Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proc. Natl. Acad. Sci. U.S.A. 106, 19970–19974
    1. Price J., Turner D., Cepko C. (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. Natl. Acad. Sci. U.S.A. 84, 156–160
    1. Peng G., Sun D., Rajashankar K. R., Qian Z., Holmes K. V., Li F. (2011) Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor. Proc. Natl. Acad. Sci. U.S.A. 108, 10696–10701
    1. Towler P., Staker B., Prasad S. G., Menon S., Tang J., Parsons T., Ryan D., Fisher M., Williams D., Dales N. A., Patane M. A., Pantoliano M. W. (2004) ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem. 279, 17996–18007
    1. Hou Y., Peng C., Yu M., Li Y., Han Z., Li F., Wang L. F., Shi Z. (2010) Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry. Arch. Virol. 155, 1563–1569
    1. Otwinowski Z., Minor W. (1997) Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326
    1. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S., Read R. J., Rice L. M., Simonson T., Warren G. L. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921
    1. Murshudov G. N., Vagin A. A., Lebedev A., Wilson K. S., Dodson E. J. (1999) Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D Biol. Crystallogr. 55, 247–255
    1. Fenn T. D., Ringe D., Petsko G. A. (2003) POVScript+: a program for model and data visualization using persistence of vision ray-tracing. J. Appl. Crystallogr. 36, 944–947

Source: PubMed

3
Sottoscrivi