Particle Forming Amorphous Solid Dispersions: A Mechanistic Randomized Pharmacokinetic Study in Humans

Andreas Schittny, Samuel Waldner, Urs Duthaler, Alexander Vorobyev, Rimma Abramovich, Stephan Krähenbühl, Maxim Puchkov, Jörg Huwyler, Andreas Schittny, Samuel Waldner, Urs Duthaler, Alexander Vorobyev, Rimma Abramovich, Stephan Krähenbühl, Maxim Puchkov, Jörg Huwyler

Abstract

Amorphous solid dispersions (ASDs) are a promising drug-delivery strategy to overcome poor solubility through formulation. Currently, the understanding of drug absorption mechanisms from ASDs in humans is incomplete. Aiming to gain insights in this matter, we conducted a randomized cross-over design open-label clinical study (NCT03886766) with 16 healthy male volunteers in an ambulatory setting, using micro-dosed efavirenz as a model drug. In three phases, subjects were administered (1) solid ASD of efavirenz 50 mg or (2) dissolved ASD of efavirenz 50 mg or (3) a molecular solution of efavirenz 3 mg (non-ASD) as a control in block-randomized order. Endpoints were the pharmacokinetic profiles (efavirenz plasma concentration vs. time curves) and derived pharmacokinetic parameters thereof (AUC0-t, Cmax, tmax, and ka). Results showed that the dissolved ASD (intervention 2) exhibited properties of a supersaturated solution (compared to aqueous solubility) with rapid and complete absorption of the drug from the drug-rich particles. All interventions showed similar AUC0-t and were well tolerated by subjects. The findings highlight the potential of particle forming ASDs as an advanced drug-delivery system for poorly soluble drugs and provide essential insights into underlying mechanisms of ASD functioning in humans, partially validating current conceptual models.

Keywords: amorphous solid dispersions; bioavailability; clinical study; hot-melt extrusion; poorly soluble drugs.

Conflict of interest statement

There is no conflict of interest on a financial, scientific, intellectual, proprietary, or personal level for the ethical and independent conduct of this study for any of the authors.

Figures

Figure 1
Figure 1
Study design according to the CONSORT Statement 2010 [20].
Figure 2
Figure 2
Normalized pharmacokinetic profiles. Efavirenz plasma concentrations vs. time curves of efavirenz administered in a dissolved state (A) in intervention 2 (dissolved amorphous solid dispersions (ASD) of efavirenz 50 mg, ○) and intervention 3 (solution of efavirenz 3 mg, △); as well as efavirenz administered in a solid-state (B) in intervention 1 (ASD of efavirenz 50 mg, □) and the marketed formulation (50 mg, ▼) [18] in B are shown. Error bars: standard deviation.
Figure 3
Figure 3
Box plots of normalized pharmacokinetic parameters retrieved from the non-compartmental analysis. The area under the curve AUC0–t (A), maximum concentration Cmax (B) and the time of maximum concentration tmax (C) as well as from two-compartment analysis, i.e., absorption constant ka (D) for intervention 1 (ASD of efavirenz 50 mg), intervention 2 (dissolved ASD of efavirenz 50 mg), intervention 3 (solution of efavirenz 3 mg), and the marketed formulation 50 mg [18] are shown. AUC0–t and Cmax are normalized to a dose of 1 mg efavirenz. Boxes show the interquartile range with the median, whiskers show the 5th (low) and 95th (high) percentile, and the hollow squares the mean values. A statistically significant difference (p < 0.05, Bonferroni test) is indicated by *.
Figure 4
Figure 4
Conceptual model describing the drug release from ASDs, the formation of drug-rich particles, and intestinal absorption of the molecularly dissolved drug. The solid ASD dissolves into drug-rich particles (presumably composed of drug, polymer, and surfactants), from which molecularly dissolved drug is liberated and absorbed (adapted from [28], Taylor & Francis Group, 2019).

References

    1. Lipp R. The Innovator Pipeline: Bioavailability Challenges and Advanced Oral Drug Delivery Opportunities. [(accessed on 16 March 2021)];2013 Available online:
    1. Waring M.J., Arrowsmith J., Leach A.R., Leeson P.D., Mandrell S., Owen R.M., Pairaudeau G., Pennie W.D., Pickett S.D., Wang J., et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 2015;14:475–486. doi: 10.1038/nrd4609.
    1. Padden B.E., Miller J.M.M., Robbins T., Zocharski P.D., Prasad L., Spence J.K. Amorphous Solid Dispersions as Enabling Formulations for Discovery and Early Development. [(accessed on 16 March 2021)]; Available online:
    1. Huang Y., Dai W.-G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm. Sin. B. 2014;4:18–25. doi: 10.1016/j.apsb.2013.11.001.
    1. Fong S.Y.K., Bauer-Brandl A., Brandl M. Oral bioavailability enhancement through supersaturation: An update and meta-analysis. Expert Opin. Drug Deliv. 2016;14:403–426. doi: 10.1080/17425247.2016.1218465.
    1. Newman A., Knipp G., Zografi G. Assessing the performance of amorphous solid dispersions. J. Pharm. Sci. 2012;101:1355–1377. doi: 10.1002/jps.23031.
    1. Baghel S., Cathcart H., O’Reilly N.J. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J. Pharm. Sci. 2016;105:2527–2544. doi: 10.1016/j.xphs.2015.10.008.
    1. Taylor L.S., Zhang G.G. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv. Drug Deliv. Rev. 2016;101:122–142. doi: 10.1016/j.addr.2016.03.006.
    1. Raina S.A., Eerdenbrugh B.V., Alonzo D.E., Mo H., Zhang G.G.Z., Gao Y. Trends in the precipitation and crystallization behav-ior of supersaturated aqueous solutions of poorly water-soluble drugs assessed using synchrotron radiation. J. Pharm. Sci. 2015;104:1981–1992. doi: 10.1002/jps.24423.
    1. Li N., Taylor L.S. Tailoring supersaturation from amorphous solid dispersions. J. Control. Release. 2018;279:114–125. doi: 10.1016/j.jconrel.2018.04.014.
    1. Raina S.A., Zhang G.G.Z., Alonzo D.E., Wu J., Zhu D., Catron N.D., Gao Y., Taylor L.S. Impact of Solubilizing Additives on Supersaturation and Membrane Transport of Drugs. Pharm. Res. 2015;32:3350–3364. doi: 10.1007/s11095-015-1712-4.
    1. Polster C.S., Wu S.-J., Gueorguieva I., Sperry D.C. Mechanism for Enhanced Absorption of a Solid Dispersion Formulation of LY2300559 Using the Artificial Stomach Duodenum Model. Mol. Pharm. 2015;12:1131–1140. doi: 10.1021/mp5006036.
    1. Othman A.A., Cheskin H., Locke C., Nothaft W., Dutta S. A Phase 1 Study to Evaluate the Bioavailability and Food Effect of 2 Solid-Dispersion Formulations of the TRPV1 Antagonist ABT-102, Relative to the Oral Solution Formulation, in Healthy Human Volunteers. Clin. Pharmacol. Drug Dev. 2012;1:24–31. doi: 10.1177/2160763X11430860.
    1. Angi R., Solymosi T., Erdősi N., Jordán T., Kárpáti B., Basa-Dénes O., Ujhelyi A., McDermott J., Roe C., Mair S., et al. Preparation, Pre-clinical and Clinical Evaluation of a Novel Rapidly Absorbed Celecoxib Formulation. AAPS PharmSciTech. 2019;20:90. doi: 10.1208/s12249-018-1270-2.
    1. Park K. Drug release mechanisms from amorphous solid dispersions. J. Control. Release. 2015;211:171. doi: 10.1016/j.jconrel.2015.06.027.
    1. Tho I., Liepold B., Rosenberg J., Maegerlein M., Brandl M., Fricker G. Formation of nano/micro-dispersions with improved dissolu-tion properties upon dispersion of ritonavir melt extrudate in aqueous media. Eur. J. Pharm. Sci. 2010;40:25–32. doi: 10.1016/j.ejps.2010.02.003.
    1. Six K., Daems T., de Hoon J., Van Hecken A., Depre M., Bouche M.-P. Clinical study of solid dispersions of itraconazole pre-pared by hot-stage extrusion. Eur. J. Pharm. Sci. 2005;24:179–186. doi: 10.1016/j.ejps.2004.10.005.
    1. Donzelli M., Derungs A., Serratore M.-G., Noppen C., Nezic L., Krähenbühl S. The Basel Cocktail for Simultaneous Pheno-typing of Human Cytochrome P450 Isoforms in Plasma, Saliva and Dried Blood Spots. Clin. Pharmacokinet. 2014;53:271–282. doi: 10.1007/s40262-013-0115-0.
    1. EMA . Stocrin Approval—Scientific Discussion. EMA; Amsterdam, The Netherlands: 2004.
    1. Schulz K.F., Altman D.G., Moher D. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. Trials. 2010;11:1–8. doi: 10.1186/1745-6215-11-32.
    1. Schittny A., Philipp-Bauer S., Detampel P., Huwyler J., Puchkov M. Mechanistic insights into effect of surfactants on oral bioa-vailability of amorphous solid dispersions. J. Control. Release. 2020;320:214–225. doi: 10.1016/j.jconrel.2020.01.031.
    1. Shapiro S.S., Wilk M.B. An analysis of variance test for normality (complete samples) Biometrika. 1965;52:591–611. doi: 10.1093/biomet/52.3-4.591.
    1. Mauchly J.W. Significance Test for Sphericity of a Normal n-Variate Distribution. Ann. Math. Stat. 1940;11:204–209. doi: 10.1214/aoms/1177731915.
    1. Girden E. ANOVA 2455 Teller Road. SAGE Publications, Inc.; Thousand Oaks, CA, USA: 1992. [(accessed on 16 March 2021)]. Available online: .
    1. Olkin I. Contributions to Probability and Statistics. Stanford University Press; Stanford, CA, USA: 1960. Essays in Honor of Harold Hotelling.
    1. Welch B.L. On the Comparison of Several Mean Values: An Alternative Approach. Biometrika. 1951;38:330. doi: 10.1093/biomet/38.3-4.330.
    1. Robarge J.D., Metzger I.F., Lu J., Thong N., Skaar T.C., Desta Z. Population Pharmacokinetic Modeling To Estimate the Con-tributions of Genetic and Nongenetic Factors to Efavirenz Disposition. Antimicrob. Agents Chemother. 2017;61:e01813-16. doi: 10.1128/AAC.01813-16.
    1. Schittny A., Huwyler J., Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: A review. Drug Deliv. 2019;27:110–127. doi: 10.1080/10717544.2019.1704940.
    1. Swissmedic Product Information—Stocrin. [(accessed on 16 March 2021)]; Available online:
    1. Pawar J., Tayade A., Gangurde A., Moravkar K., Amin P. Solubility and dissolution enhancement of efavirenz hot melt extruded amorphous solid dispersions using combination of polymeric blends: A QbD approach. Eur. J. Pharm. Sci. 2016;88:37–49. doi: 10.1016/j.ejps.2016.04.001.
    1. Sathigari S.K., Radhakrishnan V.K., Davis V.A., Parsons D.L., Babu R.J. Amorphous-State Characterization of Efavirenz—Polymer Hot-Melt Extrusion Systems for Dissolution Enhancement. J. Pharm. Sci. 2012;101:3456–3464. doi: 10.1002/jps.23125.
    1. Lavra Z.M.M., de Ré Santana D.P. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus. Drug Dev. Ind. Pharm. 2017;43:42–54. doi: 10.1080/03639045.2016.1205598.
    1. Kasim N.A., Whitehouse M., Ramachandran C., Bermejo M., Lennernäs H., Hussain A.S. Molecular Properties of WHO Es-sential Drugs and Provisional Biopharmaceutical Classification. Mol. Pharm. 2004;1:85–96. doi: 10.1021/mp034006h.
    1. Musther H., Olivares-Morales A., Hatley O.J., Liu B., Hodjegan A.R. Animal versus human oral drug bioavailability: Do they correlate? Eur. J. Pharm. Sci. 2014;57:280–291. doi: 10.1016/j.ejps.2013.08.018.
    1. Cristofoletti R., Nair A., Abrahamsson B., Groot D.W., Kopp S., Langguth P., Polli J.E., Shah V.P., Dressman J.B. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Efavirenz. J. Pharm. Sci. 2013;102:318–329. doi: 10.1002/jps.23380.
    1. McDonagh E.M., Lau J.L., Alvarellos M.L., Altman R.B., Klein T.E. PharmGKB summary: Efavirenz pathway, pharmacokinetics. Pharm. Genom. 2015;25:363–376. doi: 10.1097/FPC.0000000000000145.
    1. Wang P.-F., Neiner A., Kharasch E.D. Efavirenz Metabolism: Influence of Polymorphic CYP2B6 Variants and Stereochemistry. Drug Metab. Dispos. 2019;47:1195–1205. doi: 10.1124/dmd.119.086348.
    1. Da Honório T.S., Pinto E.C., Rocha H.V.A., Esteves V.S.D., dos Santos T.C., Castro H.C.R. In Vitro–In Vivo Correlation of Efavi-renz Tablets Using GastroPlus®. AAPS PharmSciTech. 2013;14:1244–1254. doi: 10.1208/s12249-013-0016-4.
    1. Marciani L., Cox E.F., Hoad C.L., Totman J.J., Costigan C., Singh G. Effects of various food ingredients on gall bladder empty-ing. Eur. J. Clin. Nutr. 2013;67:1182–1187. doi: 10.1038/ejcn.2013.168.
    1. Takano R., Sugano K., Higashida A., Hayashi Y., Machida M., Aso Y., Yamashita S. Oral Absorption of Poorly Water-Soluble Drugs: Computer Simulation of Fraction Absorbed in Humans from a Miniscale Dissolution Test. Pharm. Res. 2006;23:1144–1156. doi: 10.1007/s11095-006-0162-4.
    1. Sustiva 600 mg Film-Coated Tablets—Summary of Product Characteristics (SmPC)—(emc) [(accessed on 16 March 2021)]; Available online: .
    1. Glass G.V., Peckham P.D., Sanders J.R. Consequences of Failure to Meet Assumptions Underlying the Fixed Effects Analyses of Variance and Covariance. Rev. Educ. Res. 1972;42:237–288. doi: 10.3102/00346543042003237.
    1. Donaldson T.S. Robustness of the F-Test to Errors of both Kinds and the Correlation between the Numerator and Denominator of the F-Ratio. J. Am. Stat. Assoc. 1968;63:660–676. doi: 10.2307/2284037.

Source: PubMed

3
Sottoscrivi