Joint effects of polymorphisms in the HTRA1, LOC387715/ARMS2, and CFH genes on AMD in a Caucasian population

Peter J Francis, Hong Zhang, Andrew Dewan, Josephine Hoh, Michael L Klein, Peter J Francis, Hong Zhang, Andrew Dewan, Josephine Hoh, Michael L Klein

Abstract

Purpose: To estimate the joint effects of single nucleotide polymorphisms (SNPs) in the genes complement factor H (CFH), HtrA serine peptidase 1 (HTRA1), and age-related maculopathy susceptibility 2 (LOC387715/ARMS2) in a Caucasian age related macular degeneration (AMD) case-control cohort.

Methods: We genotyped three SNPs, rs1061170 (exon 9, CFH), rs11200638 (HTRA1 promoter, -512 bp), and rs10490924 (6.6 kb upstream of HTRA1 in LOC387715/ARMS2) in 333 cases with advanced AMD (choroidal neovascularization [CNV] and geographic atrophy) and 171 age-matched examined controls. Association tests were performed for individual SNPs and jointly with the CFH SNP Y402H. Analyses for interaction were also performed.

Results: The linkage disequilibrium measure for two SNPs on 10q26, rs10490924 and rs11200638, is D'=0.8 and all four possible haplotypes of the two SNPs were detected in the samples. The allelic association test for rs11200638 on the promoter of HTRA1 yielded p-values less than 10(-10) for geographic atrophy, less than 10(-16) for neovascularization, and less than 10(-19) for the pooled phenotypes (with an odds ration [OR] of 3.973; 95% confidence interval [CI] 2.928, 5.390). Disease risk is conferred in a dosage-dependent fashion. Similar figures were observed for the LOC387715/ARMS2 SNP. No interaction was detected between either between the 10q26 SNPs or the CFH SNP.

Conclusions: This is the first analysis to show that the two 10q26 SNPs are not in complete linkage disequilibrium. Our studies however show that both the HTRA1 and LOC387715/ARMS2 SNP appear to contribute equally to disease risk (both geographic atrophy and choroidal neovascularization) with no evidence of interaction with CFH.

References

    1. Edwards AO, Ritter R, 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308:421–4.
    1. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308:419–21.
    1. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308:385–9.
    1. Jakobsdottir J, Conley YP, Weeks DE, Mah TS, Ferrell RE, Gorin MB. Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet. 2005;77:389–407.
    1. Schmidt S, Hauser MA, Scott WK, Postel EA, Agarwal A, Gallins P, Wong F, Chen YS, Spencer K, Schnetz-Boutaud N, Haines JL, Pericak-Vance MA. Cigarette smoking strongly modifies the association of LOC387715 and age-related macular degeneration. Am J Hum Genet. 2006;78:852–64.
    1. Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, Meitinger T, Weber BH. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet. 2005;14:3227–36.
    1. Dewan A, Liu M, Hartman S, Zhang SS, Liu DT, Zhao C, Tam PO, Chan WM, Lam DS, Snyder M, Barnstable C, Pang CP, Hoh J. HTRA1 Promoter Polymorphism in Wet Age-Related Macular Degeneration. Science 2006.
    1. Yang Z, Camp NJ, Sun H, Tong Z, Gibbs D, Cameron DJ, Chen H, Zhao Y, Pearson E, Li X, Chien J, Dewan A, Harmon J, Bernstein PS, Shridhar V, Zabriskie NA, Hoh J, Howes K, Zhang K. A Variant of the HTRA1 Gene Increases Susceptibility to Age-Related Macular Degeneration. Science 2006.
    1. Cameron DJ, Yang Z, Gibbs D, Chen H, Kaminoh Y, Jorgensen A, Zeng J, Luo L, Brinton E, Brinton G, Brand JM, Bernstein PS, Zabriskie NA, Tang S, Constantine R, Tong Z, Zhang K. HTRA1 variant confers similar risks to geographic atrophy and neovascular age-related macular degeneration. Cell Cycle. 2007;6:1122–5.
    1. DeAngelis MM, Ji F, Kim IK, Adams S, Capone A, Jr, Ott J, Miller JW, Dryja TP. Cigarette smoking, CFH, APOE, ELOVL4, and risk of neovascular age-related macular degeneration. Arch Ophthalmol. 2007;125:49–54.
    1. Weger M, Renner W, Steinbrugger I, Köfer K, Wedrich A, Groselj-Strele A, El-Shabrawi Y, Schmut O, Haas A. Association of the HTRA1 −625G>A promoter gene polymorphism with exudative age-related macular degeneration in a Central European population. Mol Vis. 2007;13:1274–9.
    1. Yoshida T, DeWan A, Zhang H, Sakamoto R, Okamoto H, Minami M, Obazawa M, Mizota A, Tanaka M, Saito Y, Takagi I, Hoh J, Iwata T. HTRA1 promoter polymorphism predisposes Japanese to age-related macular degeneration. Mol Vis. 2007;13:545–8.
    1. Mori K, Gehlbach PL, Kabasawa S, Kawasaki I, Oosaki M, Iizuka H, Katayama S, Awata T, Yoneya S. Coding and noncoding variants in the CFH gene and cigarette smoking influence the risk of age-related macular degeneration in a Japanese population. Invest Ophthalmol Vis Sci. 2007;48:5315–9.
    1. Grau S, Richards PJ, Kerr B, Hughes C, Caterson B, Williams AS, Junker U, Jones SA, Clausen T, Ehrmann M. The role of human HtrA1 in arthritic disease. J Biol Chem. 2006;281:6124–9.
    1. Kanda A, Chen W, Othman M, Branham KE, Brooks M, Khanna R, He S, Lyons R, Abecasis GR, Swaroop A. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci USA. 2007;104:16227–32.
    1. The Age-Related Eye Disease Study (AREDS) design implications. AREDS report no. 1. Control Clin Trials. 1999;20:573–600.
    1. Okamoto H, Umeda S, Obazawa M, Minami M, Noda T, Mizota A, Honda M, Tanaka M, Koyama R, Takagi I, Sakamoto Y, Saito Y, Miyake Y, Iwata T. Complement factor H polymorphisms in Japanese population with age-related macular degeneration. Mol Vis. 2006;12:156–8.
    1. Armitage P, Berry G. Statistical methods in medical research. Oxford: Blackwell Scientific Pulbications; 1971.
    1. Scheffe H. The analysis of variance. New York: Wiley; 1959
    1. Akaike H. Information theory and an extension of the maximum likelihood principle. In B. N. Petrov, B. F. Csaki, editors. Second International Symposium on Information Theory; 1973 p. 267–281.
    1. Francis PJ, George S, Schultz DW, Rosner B, Hamon S, Ott J, Weleber RG, Klein ML, Seddon JM. The LOC387715 gene, smoking, body mass index, environmental associations with advanced age-related macular degeneration. Hum Hered. 2007;63:212–8.

Source: PubMed

3
Sottoscrivi