Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta

Barbara Gasse, Megana Prasad, Sidney Delgado, Mathilde Huckert, Marzena Kawczynski, Annelyse Garret-Bernardin, Serena Lopez-Cazaux, Isabelle Bailleul-Forestier, Marie-Cécile Manière, Corinne Stoetzel, Agnès Bloch-Zupan, Jean-Yves Sire, Barbara Gasse, Megana Prasad, Sidney Delgado, Mathilde Huckert, Marzena Kawczynski, Annelyse Garret-Bernardin, Serena Lopez-Cazaux, Isabelle Bailleul-Forestier, Marie-Cécile Manière, Corinne Stoetzel, Agnès Bloch-Zupan, Jean-Yves Sire

Abstract

Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene (MMP20) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

Keywords: MMP20; amelogenesis imperfecta; evolution; mutations; phenotype.

Figures

Figure 1
Figure 1
SLAC analysis. The dN-dS value was analyzed along the MMP20 codon sequence. dN, non-synonymous substitution rate; dS, synonymous substitution rate. When dN-dS 0 (i.e., dN > dS), the codon is considered positively selected.
Figure 2
Figure 2
Evolutionary chart of MMP20. This chart was obtained from the alignment of 75 sequences representative of the main mammalian lineages (approx. 180 million years of evolution) and was deduced from the results obtained when dN/dS was calculated at each codon of MMP20 by Consurf (see Supplementary Figures 1, 2). Human sequence is used as a reference. Positions subjected to purifying selecton are on black (conserved positions) and gray (conservative positions) background. Variable positions on white background.
Figure 3
Figure 3
Mutational analysis of the two new MMP20 mutations. (A,C) Pedigree of the AI kindred; (B,D) DNA sequencing chromatograms of control (+/+) and of heterozygous (+/−) mutations. Arrows point to the mutation sites. See Figure 2, Supplementary Figure 1, Supplementary Table 2 for the validation of these mutations by means of evolutionary analyses. (A,B) Patient 1 with the homozygous mutation (c.323 A>G; p.Y108C). (C,D) Patient 2 with the compound heterozygous mutation (c.567 T>C; p.L189P / c.910 G>A; p.A304T). The second mutation was already reported as homozygous MMP20 mutation (Lee et al., 2010).
Figure 4
Figure 4
Hypomature amelogenesis imperfecta encountered in patients with diverse MMP20 mutations. (A–D): Patient 1 (c. 323 A>G). Intraoral clinical views and panoramic radiograph of primary, mixed (A: 6 years old; B: 7 years old) and permanent (C,D: 11 year old) dentitions. Note the limited contrast between enamel and dentine on X-rays. (E,F): Patient 2 (c.567 T>C + c.910 G>A). Primary dentition of a 5 year old girl. No enamel or very thin enamel was visible on X-rays. (G–J): Patient 3 (c.126+6 t>g + c.954-2 a>t). A young boy at 5 (G,I: primary teeth) and then at 8 years (H,J: permanent teeth). Limited radio-opaque enamel, if none, was seen on X-rays. (K, L): Patient 4 (c.389 C>T + c.954-2 a>t). Permanent teeth of a 20-year old man. Hypomature enamel is clearly visible on X-rays. (M,N): Patient 5 and patient 6 (c.954-2 a>t). Two girls displaying the same mutation leading to similar phenotypes with hypomature amelogenesis imperfecta.
Figure 5
Figure 5
MMP20 mutations known to date. Schematical representation of the human MMP20 gene structure with indication of the previously reported mutations and the two new mutations identified in this study (in red).

References

    1. Al Hashimi N., Sire J. Y., Delgado S. (2009). Evolutionary analysis of mammalian enamelin, the largest enamel protein, supports a crucial role for the 32 kDa peptide and reveals selective adaptation in rodents and primates. J. Mol. Evol. 69, 635–656. 10.1007/s00239-009-9302-x
    1. Bardet C., Delgado S., Sire J. Y. (2010). MEPE evolution in mammals reveals regions and residues of prime functional importance. Cell. Mol. Life Sci. 67, 305–320. 10.1007/s00018-009-0185-1
    1. Bartlett J. D., Simmer J. P., Xue J., Margolis H. C., Moreno E. C. (1996). Molecular cloning and mRNA tissue distribution of a novel matrix metalloproteinase isolated from porcine enamel organ. Gene 183, 123–128. 10.1016/S0378-1119(96)00525-2
    1. Bègue-Kirn C., Krebsbach P. H., Bartlett J. D., Butler W. T. (1998). Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur. J. Oral Sci. 106, 963–970. 10.1046/j.0909-8836.1998.eos106510.x
    1. Bloch-Zupan A., Sedano H., Scully C. (2012). Dento/Oro/Craniofacial Anomalies and Genetics, 1st Edn. Boston, MA: Elsevier.
    1. Chun Y. H., Yamakoshi Y., Yamakoshi F., Fukae M., Hu J. C., Bartlett J. D., et al. . (2010). Cleavage site specificity of MMP-20 for secretory-stage ameloblastin. J. Dent. Res. 89, 785–790. 10.1177/0022034510366903
    1. Crawford P. J., Aldred M., Bloch-Zupan A. (2007). Amelogenesis imperfecta. Orphanet J. Rare Dis. 2:17. 10.1186/1750-1172-2-17
    1. Delgado S., Ishiyama M., Sire J. Y. (2007). Validation of amelogenesis imperfecta inferred from amelogenin evolution. J. Dent. Res. 86, 326–330. 10.1177/154405910708600405
    1. Delport W., Scheffler K., Botha G., Gravenor M. B., Muse S. V., Kosakovsky Pond S. L. (2010). CodonTest: modeling amino acid substitution preferences in coding sequences. PLoS Comput. Biol. 6:e1000885. 10.1371/journal.pcbi.1000885
    1. Fanjul-Fernandez M., Folgueras A. R., Cabrera S., Lopez-Otin C. (2010). Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta 1803, 3–19. 10.1016/j.bbamcr.2009.07.004
    1. Fincham A. G., Hu Y., Pavlova Z., Slavkin H. C., Snead M. L. (1989). Human amelogenins: sequences of “TRAP” molecules. Calcif. Tissue Int. 45, 243–250. 10.1007/BF02556044
    1. Gasse B., Karayigit E., Mathieu E., Jung S., Garret A., Huckert M., et al. . (2013). Homozygous and compound heterozygous MMP20 mutations in amelogenesis imperfecta. J. Dent. Res. 92, 598–603. 10.1177/0022034513488393
    1. Gomis-Ruth F. X. (2009). Catalytic domain architecture of metzincin metalloproteases. J. Biol. Chem. 284, 15353–15357. 10.1074/jbc.R800069200
    1. Gostyńska K. B., Yan Yuen W., Pasmooij A. M., Stellingsma C., Pas H. H., Lemmink H., et al. . (2016). Carriers with functional null mutations in LAMA3 have localized enamel abnormalities due to haploinsufficiency. Eur. J. Hum. Genet. 25, 94–99. 10.1038/ejhg.2016.136
    1. Hebsgaard S. M., Korning P. G., Tolstrup N., Engelbrecht J., Rouze P., Brunak S. (1996). Splice site prediction in Arabidopsis thaliana DNA by combining local and global sequence information. Nucl. Acid Res. 24, 3439–3452. 10.1093/nar/24.17.3439
    1. Hentschel J., Tatun D., Parkhomchuk D., Kurth I., Schimmel B., Heinrich-Weltzien R., et al. . (2016). Identification of the first multi-exonic WDR72 deletion in isolated amelogenesis imperfecta, and generation of a WDR72-specific copy number screening tool. Gene 590, 1–4. 10.1016/j.gene.2016.05.040
    1. Huckert M., Stoetzel C., Morkmued S., Laugel-Haushalter V., Geoffroy V., Muller J., et al. . (2015). Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta. Hum. Mol. Genet. 24, 3038–3049. 10.1093/hmg/ddv053
    1. Iwata T., Yamakoshi Y., Hu J. C., Ishikawa I., Bartlett J. D., Krebsbach P. H., et al. . (2007). Processing of ameloblastin by MMP-20. J. Dent. Res. 86, 153–157. 10.1177/154405910708600209
    1. Kawasaki K., Suzuki T. (2011). Molecular evolution of matrix metalloproteinase 20. Eur. J. Oral Sci. 119, 247–253. 10.1111/j.1600-0722.2011.00898.x
    1. Kim J. W., Simmer J. P., Hart T. C., Hart P. S., Ramaswami M. D., Bartlett J. D., et al. . (2005). MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta. J. Med. Genet. 42, 271–275. 10.1136/jmg.2004.024505
    1. Kim Y. J., Kang J., Seymen F., Koruyuku M., Gencay K., Hu J. C., et al. (2016a). MMP20 mutations causing enamel hypomaturation in two families, in Enamel 9 Conference, (Harrogate, UK: ), Abstract.
    1. Kim Y. J., Seymen F., Koruyucu M., Kasimoglu Y., Gencay K., Shin T. J., et al. . (2016b). Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta. Oral Dis. 22, 297–302. 10.1111/odi.12439
    1. Kim Y. J., Shin T. J., Hyun H. K., Lee S. H., Lee Z. H., Kim J. W. (2016c). A novel de novo mutation in LAMB3 causes localized hypoplastic enamel in the molar region. Eur. J. Oral Sci. 124, 403–435. 10.1111/eos.12280
    1. Kim Y. J., Kim Y. J., Kang J., Shin T. J., Hyun H. K., Lee S. H., et al. . (2017). A novel AMELX mutation causes hypoplastic amelogenesis imperfecta. Arch. Oral Biol. 76, 61–65. 10.1016/j.archoralbio.2017.01.004
    1. Kumar S., Dudley J. T., Filipski A., Liu L. (2011). Phylomedicine: an evolutionary telescope to explore and diagnose the universe of disease mutations. Trends Genet. 27, 377–386. 10.1016/j.tig.2011.06.004
    1. Lee S. K., Seymen F., Kang H. Y., Lee K. E., Gencay K., Tuna B., et al. . (2010). MMP20 hemopexin domain mutation in amelogenesis imperfecta. J. Dent. Res. 89, 46–50. 10.1177/0022034509352844
    1. Llano E., Pendas A. M., Knauper V., Sorsa T., Salo T., Salido E., et al. . (1997). Identification and structural and functional characterization of human enamelysin (MMP-20). Biochemistry 36, 15101–15108. 10.1021/bi972120y
    1. Lu Y., Papagerakis P., Yamakoshi Y., Hu J. C., Bartlett J. D., Simmer J. P. (2008). Functions of KLK4 and MMP-20 in dental enamel formation. Biol. Chem. 389, 695–700. 10.1515/BC.2008.080
    1. Meredith R. W., Gatesy J., Cheng J., Springer M. S. (2011). Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales. Proc. Biol. Sci. 278, 993–1002. 10.1098/rspb.2010.1280
    1. Meredith R. W., Gatesy J., Springer M. S. (2013). Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes. BMC Evol. Biol. 13:e20. 10.1186/1471-2148-13-20
    1. Moradian-Oldak J., Leung W., Simmer J. P., Zeichner-David M., Fincham A. G. (1996). Identification of a novel proteinase (ameloprotease-I) responsible for the complete degradation of amelogenin during enamel maturation. Biochem. J. 318, 1015–1021. 10.1042/bj3181015
    1. Nagano T., Kakegawa A., Yamakoshi Y., Tsuchiya S., Hu J. C., Gomi K., et al. . (2009). Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. J. Dent. Res. 88, 823–828. 10.1177/0022034509342694
    1. Ozdemir D., Hart P. S., Ryu O. H., Choi S. J., Ozdemir-Karatas M., Firatli E., et al. . (2005). MMP20 active-site mutation in hypomaturation amelogenesis imperfecta. J. Dent. Res. 84, 1031–1035. 10.1177/154405910508401112
    1. Papagerakis P., Lin H. K., Lee K. Y., Hu Y., Simmer J. P., Bartlett J. D., et al. . (2008). Premature stop codon in MMP20 causing amelogenesis imperfecta. J. Dent. Res. 87, 56–59. 10.1177/154405910808700109
    1. Parry D. A., Holmes T. D., Gamper N., El-Sayed W., Hettiarachchi N. T., Ahmed M., et al. . (2016a). A homozygous STIM1 mutation impairs store-operated calcium entry and natural killer cell effector function without clinical immunodeficiency. J. Allergy Clin. Immun. 137, 955–957. 10.1016/j.jaci.2015.08.051
    1. Parry D. A., Smith C. E., El-Sayed W., Poulter J. A., Shore R. C., Logan C. V., et al. . (2016b). Mutations in the pH-sensing G-protein-coupled receptor GPR68 cause amelogenesis imperfecta. Am. J. Hum. Genet. 99, 984–990. 10.1016/j.ajhg.2016.08.020
    1. Pavlic A., Petelin M., Battelino T. (2007). Phenotype and enamel ultrastructure characteristics in patients with ENAM gene mutations g.13185-13186insAG and 8344delG. Arch. Oral Biol. 52, 209–217. 10.1016/j.archoralbio.2006.10.010
    1. Poulter J. A., El-Sayed W., Shore R. C., Kirkham J., Inglehearn C. F., Mighell A. J. (2014). Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta. Eur. J. Hum. Genet. 22, 132–135. 10.1038/ejhg.2013.76
    1. Pourhashemi S. J., Ghandehari Motlagh M., Meighani G., Ebrahimi Takaloo A., Mansouri M., Mohandes F., et al. . (2014). Missense mutation in Fam83H gene in Iranian patients with amelogenesis imperfecta. Iran J. Public Health 43, 1680–1687.
    1. Prasad M. K., Geoffroy V., Vicaire S., Jost B., Dumas M., Le Gras S., et al. . (2016a). A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J. Med. Genet. 53, 98–110. 10.1136/jmedgenet-2015-103302
    1. Prasad M. K., Laouina S., El Alloussi M., Dollfus H., Bloch-Zupan A. (2016b). Amelogenesis Imperfecta: 1 family, 2 phenotypes, and 2 mutated genes. J. Dent. Res. 95, 1457–1463. 10.1177/0022034516663200
    1. Rodríguez D., Morrison C. J., Overall C. M. (2010). Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta 1803, 39–54. 10.1016/j.bbamcr.2009.09.015
    1. Ryu O. H., Fincham A. G., Hu C. C., Zhang C., Qian Q., Bartlett J. D., et al. . (1999). Characterization of recombinant pig enamelysin activity and cleavage of recombinant pig and mouse amelogenins. J. Dent. Res. 78, 743–750. 10.1177/00220345990780030601
    1. Seymen F., Kim Y. J., Lee Y. J., Kang J., Kim T. H., Choi H., et al. . (2016). Recessive mutations in ACPT, encoding testicular acid phosphatase, cause hypoplastic amelogenesis imperfecta. Am. J. Hum. Genet. 99, 1199–1205. 10.1016/j.ajhg.2016.09.018
    1. Seymen F., Lee K.-E., Koruyucu M., Gencay K., Bayram M., Tuna E. B., et al. . (2014). ENAM mutations with incomplete penetrance. J. Dent. Res. 93, 988–992. 10.1177/0022034514548222
    1. Seymen F., Park J. C., Lee K. E., Lee H. K., Lee D. S., Koruyucu M., et al. . (2015). Novel MMP20 and KLK4 mutations in amelogenesis imperfecta. J. Dent. Res. 94, 1063–1069. 10.1177/0022034515590569
    1. Silvent J., Gasse B., Mornet E., Sire J. Y. (2014). Molecular evolution of the tissue-nonspecific alkaline phosphatase allows prediction and validation of missense mutations responsible for hypophosphatasia. J. Biol. Chem. 289, 24168–24179. 10.1074/jbc.M114.576843
    1. Silvent J., Sire J. Y., Delgado S. (2013). The dentin matrix acidic phosphoprotein 1 (DMP1) in the light of mammalian evolution. J. Mol. Evol. 76, 59–70. 10.1007/s00239-013-9539-2
    1. Smith C. E., Murillo G., Brookes S. J., Poulter J. A., Silva S., Kirkham J., et al. . (2016). Deletion of amelotin exons 3-6 is associated with amelogenesis imperfecta. Hum. Mol. Genet. 25, 3578–3587. 10.1093/hmg/ddw203
    1. Wang S., Choi M., Richardson A. S., Reid B. M., Seymen F., Yildirim M., et al. . (2014b). STIM1 and SLC24A4 are critical for enamel maturation. J. Dent. Res. 93, 94S–100S. 10.1177/0022034514527971
    1. Wang S. K., Hu Y., Simmer J. P., Seymen F., Estrella N. M., Pal S., et al. . (2013). Novel KLK4 and MMP20 mutations discovered by whole-exome sequencing. J. Dent. Res. 92, 266–271. 10.1177/0022034513475626
    1. Witkop C. J. (1989). Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J. Oral Pathol. 17, 547–553. 10.1111/j.1600-0714.1988.tb01332.x
    1. Yeo G., Burge C. B. (2004). Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377–394. 10.1089/1066527041410418

Source: PubMed

3
Sottoscrivi