Genetic Evidence Supporting the Role of the Calcium Channel, CACNA1S, in Tooth Cusp and Root Patterning

Virginie Laugel-Haushalter, Supawich Morkmued, Corinne Stoetzel, Véronique Geoffroy, Jean Muller, Anne Boland, Jean-François Deleuze, Kirsley Chennen, Waranuch Pitiphat, Hélène Dollfus, Karen Niederreither, Agnès Bloch-Zupan, Patimaporn Pungchanchaikul, Virginie Laugel-Haushalter, Supawich Morkmued, Corinne Stoetzel, Véronique Geoffroy, Jean Muller, Anne Boland, Jean-François Deleuze, Kirsley Chennen, Waranuch Pitiphat, Hélène Dollfus, Karen Niederreither, Agnès Bloch-Zupan, Patimaporn Pungchanchaikul

Abstract

In this study, we report a unique dominantly inherited disorganized supernumerary cusp and single root phenotype presented by 11 affected individuals belonging to 5 north-eastern Thai families. Using whole exome sequencing (WES) we identified a common single missense mutation that segregates with the phenotype in exon 6 of CACNA1S (Cav1.1) (NM_000069.2: c.[865A > G];[=] p.[Ile289Val];[=]), the Calcium Channel, Voltage-Dependent, L Type, Alpha-1s Subunit, OMIM ∗ 114208), affecting a highly conserved amino-acid isoleucine residue within the pore forming subdomain of CACNA1S protein. This is a strong genetic evidence that a voltage-dependent calcium ion channel is likely to play a role in influencing tooth morphogenesis and patterning.

Keywords: NGS; calcium ion channel; dental anomalies; human; mutations; patterning; rare disease.

Figures

FIGURE 1
FIGURE 1
A striking multiple cusps single root phenotype. Normal crown morphology (A,B) of the right upper second premolar (15) and first permanent molar (16) and of the right lower premolar (45) and first permanent molar (46) could be compared to the multicusp pattern phenotype clearly visible both in the upper (C 1_III.11, E 2_III.7) and lower (D 1_III.11, F 2_III.7) jaws. On the close up of the right premolar-molar area on panoramic radiographs (G control, H 1_III.11 affected) molars present a single root (1) pattern. Only the first lower permanent molar (46) shows a more apical root furcation leading to the taurodontic appearance of the tooth.
FIGURE 2
FIGURE 2
Pedigrees and sequences analysis of families 1–5. Black squares indicate the patients analyzed in this study. All available members from families 2 and 3 were analyzed by whole exome sequencing. In family 1 only the 2 individuals [indicated by a red arrow (1_II.11, 1_III.10) were analyzed by WES]. Families 4 and 5 were analyzed exclusively by Sanger sequencing. Electropherograms reveal a heterozygous missense mutation c.865A > G; p.Ile289Val in affected individuals (1_II.10, 1_III.10, 1_III.11, 2_II.5, 2_III.6, 2_III.7, 3_II.1, 3_II.2, 4_I.2, 4_II.3, 5_III.2).
FIGURE 3
FIGURE 3
CACNAS1 mutations and corresponding protein domain. (A) The CACNA1S human gene is located on chr1q32.1, extends over 73 kb, and contains 44 exons (each vertical black line denotes one exon). The position of the start codon (ATG) is indicated. The mutation detected in this study is highlighted by a red arrow on exon 6 (c.865A > G, p.Ile289Val). All other previously described mutations in the CACNA1S gene are symbolized by a single letter above the corresponding exon. (B) The corresponding protein domains are represented according to the PFAM database. (C) Schematic view of the CACNA1S encoded alpha 1 sub-unit of DHPR. The subunit has a total of four transmembrane domains (I, II, III, IV) composed by six segments (1–6) and three intracellular loop domains (loops I–II, loops II–III, and loops III–IV). The mutated isoleucine (red star) is located in the first pore-forming intramembrane domain close to one of the 3 amino-acids involved in calcium selectivity (green circles). The II_III loop interacts with RYR1 to allow excitation/contraction in muscle.
FIGURE 4
FIGURE 4
Multiple protein sequence alignment. The sequence alignment of the pore forming subdomain (position 280–301) amongst mammalian 25 species. The alignment is displayed using Jalview and colored according to the ‘ClustalX’ coloring scheme. The isoleucine mutated in the affected individuals (red arrow) is unchanged in all the species.

References

    1. Adzhubei I. A., Schmidt S., Peshkin L., Ramensky V. E., Gerasimova A., Bork P., et al. (2010). A method and server for predicting damaging missense mutations. Nat. Methods 7 248–249. 10.1038/nmeth0410-248
    1. Ahtiainen L., Uski I., Thesleff I., Mikkola M. L. (2016). Early epithelial signaling center governs tooth budding morphogenesis. J. Cell Biol. 214 753–767. 10.1083/jcb.201512074
    1. Ather A., Ather H., Acharya S. R., Radhakrishnan R. A. (2013). Lobodontia: the unravelling of the wolf teeth. Rom. J. Morphol. Embryol. 54 215–217.
    1. Backenroth D., Homsy J., Murillo L. R., Glessner J., Lin E., Brueckner M., et al. (2014). CANOES: detecting rare copy number variants from whole exome sequencing data. Nucleic Acids Res. 42:e97. 10.1093/nar/gku345
    1. Balic A., Thesleff I. (2015). Tissue interactions regulating tooth development and renewal. Curr. Top. Dev. Biol. 115 157–186. 10.1016/bs.ctdb.2015.07.006
    1. Bates E. (2015). Ion channels in development and cancer. Annu. Rev. Cell Dev. Biol. 31 231–247. 10.1146/annurev-cellbio-100814-125338
    1. Bei M. (2009). Molecular genetics of tooth development. Curr. Opin. Genet. Dev. 19 504–510. 10.1016/j.gde.2009.09.002
    1. Brook A. H., Winder M. (1979). Lobodontia–a rare inherited dental anomaly. Report of an affected family. Br. Dent. J. 147 213–215. 10.1038/sj.bdj.4804326
    1. Charles C., Lazzari V., Tafforeau P., Schimmang T., Tekin M., Klein O., et al. (2009a). Modulation of Fgf3 dosage in mouse and men mirrors evolution of mammalian dentition. Proc. Natl. Acad. Sci. U.S.A. 106 22364–22368. 10.1073/pnas.0910086106
    1. Charles C., Pantalacci S., Tafforeau P., Headon D., Laudet V., Viriot L. (2009b). Distinct impacts of Eda and Edar loss of function on the mouse dentition. PLoS One 4:e4985. 10.1371/journal.pone.0004985
    1. Dahal G. R., Rawson J., Gassaway B., Kwok B., Tong Y., Ptacek L. J., et al. (2012). An inwardly rectifying K+ channel is required for patterning. Development 139 3653–3664. 10.1242/dev.078592
    1. Duan X. (2013). ion channels, channelopathies, and tooth formation. J. Dent. Res. 93 117–125. 10.1177/0022034513507066
    1. Eltit J. M., Bannister R. A., Moua O., Altamirano F., Hopkins P. M., Pessah I. N., et al. (2012). Malignant hyperthermia susceptibility arising from altered resting coupling between the skeletal muscle L-type Ca2+ channel and the type 1 ryanodine receptor. Proc. Natl. Acad. Sci. U.S.A. 109 7923–7928. 10.1073/pnas.1119207109
    1. Fan C., Lehmann-Horn F., Weber M. A., Bednarz M., Groome J. R., Jonsson M. K., et al. (2013). Transient compartment-like syndrome and normokalaemic periodic paralysis due to a Ca(v)1.1 mutation. Brain 136 3775–3786. 10.1093/brain/awt300
    1. Fatemifar G., Hoggart C. J., Paternoster L., Kemp J. P., Prokopenko I., Horikoshi M., et al. (2013). Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances. Hum. Mol. Genet. 22 3807–3817. 10.1093/hmg/ddt231
    1. Fialho D., Griggs R. C., Matthews E. (2018). Periodic paralysis. Handb. Clin. Neurol. 148 505–520. 10.1016/B978-0-444-64076-5.00032-6
    1. Filipova D., Henry M., Rotshteyn T., Brunn A., Carstov M., Deckert M., et al. (2018). Distinct transcriptomic changes in E14.5 mouse skeletal muscle lacking RYR1 or Cav1.1 converge at E18.5. PLoS One 13:e0194428. 10.1371/journal.pone.0194428
    1. Fiszer D., Shaw M. A., Fisher N. A., Carr I. M., Gupta P. K., Watkins E. J., et al. (2015). Next-generation sequencing of RYR1 and CACNA1S in malignant hyperthermia and exertional heat illness. Anesthesiology 122 1033–1046. 10.1097/ALN.0000000000000610
    1. Fromer M., Pocklington A. J., Kavanagh D. H., Williams H. J., Dwyer S., Gormley P., et al. (2014). De novo mutations in schizophrenia implicate synaptic networks. Nature 506 179–184. 10.1038/nature12929
    1. Geller F., Feenstra B., Zhang H., Shaffer J. R., Hansen T., Esserlind A. L., et al. (2011). Genome-wide association study identifies four loci associated with eruption of permanent teeth. PLoS Genet. 7:e1002275. 10.1371/journal.pgen.1002275
    1. Geoffroy V., Herenger Y., Kress A., Stoetzel C., Piton A., Dollfus H., et al. (2018). AnnotSV: an integrated tool for structural variations annotation. Bioinformatics 10.1093/bioinformatics/bty304 [Epub ahead ofprint].
    1. Geoffroy V., Pizot C., Redin C., Piton A., Vasli N., Stoetzel C., et al. (2015). VaRank: a simple and powerful tool for ranking genetic variants. PeerJ 3:e796. 10.7717/peerj.796
    1. Georgiou D. K., Dagnino-Acosta A., Lee C. S., Griffin D. M., Wang H., Lagor W. R., et al. (2015). Ca2+ binding/permeation via calcium channel, CaV1.1, regulates the intracellular distribution of the fatty acid transport protein, CD36, and fatty acid metabolism. J. Biol. Chem. 290 23751–23765. 10.1074/jbc.M115.643544
    1. Gorlin R. J. (1998). Otodental syndrome, oculo-facio-cardio-dental (OFCD) syndrome, and lobodontia: dental disorders of interest to the pediatric radiologist. Pediatr. Radiol. 28 802–804. 10.1007/s002470050469
    1. Gorlin R. J., Cohen M. M., Hennekam R. C. M. (2001). Syndromes of the Head and Neck. Oxford: Oxford: University Press.
    1. Halling D. B., Georgiou D. K., Black D. J., Yang G., Fallon J. L., Quiocho F. A., et al. (2009). Determinants in CaV1 channels that regulate the Ca2+ sensitivity of bound calmodulin. J. Biol. Chem. 284 20041–20051. 10.1074/jbc.M109.013326
    1. Harjunmaa E., Kallonen A., Voutilainen M., Hamalainen K., Mikkola M. L., Jernvall J. (2012). On the difficulty of increasing dental complexity. Nature 483 324–327. 10.1038/nature10876
    1. Hennekam R., Krantz I., Allanson J. (2010). Gorlin’s Syndromes of the Head and Neck. Oxford: Oxford University Press.
    1. Hillson S., Grigson C., Bond S. (1998). Dental defects of congenital syphilis. Am. J. Phys. Anthropol. 107 25–40. 10.1002/(SICI)1096-8644(199809)107:1<25::AID-AJPA3>;2-C
    1. Hunter J. P., Guatelli-Steinberg D., Weston T. C., Durner R., Betsinger T. K. (2010). Model of tooth morphogenesis predicts carabelli cusp expression, size, and symmetry in humans. PLoS One 5:e11844. 10.1371/journal.pone.0011844
    1. Jackman W. R., Davies S. H., Lyons D. B., Stauder C. K., Denton-Schneider B. R., Jowdry A., et al. (2013). Manipulation of Fgf and Bmp signaling in teleost fishes suggests potential pathways for the evolutionary origin of multicuspid teeth. Evol. Dev. 15 107–118. 10.1111/ede.12021
    1. Jernvall J. (2000). Linking development with generation of novelty in mammalian teeth. Proc. Natl. Acad. Sci. U.S.A. 97 2641–2645. 10.1073/pnas.050586297
    1. Jernvall J., Aberg T., Kettunen P., Keranen S., Thesleff I. (1998). The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125 161–169.
    1. Jernvall J., Keranen S. V., Thesleff I. (2000). From the cover: evolutionary modification of development in mammalian teeth: quantifying gene expression patterns and topography. Proc. Natl. Acad. Sci. U.S.A. 97 14444–14448. 10.1073/pnas.97.26.14444
    1. Jernvall J., Kettunen P., Karavanova I., Martin L. B., Thesleff I. (1994). Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int. J. Dev. Biol. 38 463–469.
    1. Jernvall J., Thesleff I. (2012). Tooth shape formation and tooth renewal: evolving with the same signals. Development 139 3487–3497. 10.1242/dev.085084
    1. Jonsson L., Magnusson T. E., Thordarson A., Jonsson T., Geller F., Feenstra B., et al. (2018). Rare and common variants conferring risk of tooth agenesis. J. Dent. Res. 97 515–522. 10.1177/0022034517750109
    1. Karczewski K. J., Weisburd B., Thomas B., Solomonson M., Ruderfer D. M., Kavanagh D., et al. (2017). The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res. 45 D840–D845. 10.1093/nar/gkw971
    1. Kiyan A., Allen C., Damm D., Trotter L. (2013). Lobodontia: report of a family with a rare inherited dental anomaly. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 116 e508–e509. 10.1016/j.oooo.2013.09.075
    1. Kung A. W. (2006). Clinical review: thyrotoxic periodic paralysis: a diagnostic challenge. J. Clin. Endocrinol. Metab. 91 2490–2495. 10.1210/jc.2006-0356
    1. Laugel-Haushalter V., Paschaki M., Thibault-Carpentier C., Dembele D., Dolle P., Bloch-Zupan A. (2013). Molars and incisors: show your MICROARRAY IDs. BMC Res. Notes 6:113. 10.1186/1756-0500-6-113
    1. Lek M., Karczewski K. J., Minikel E. V., Samocha K. E., Banks E., Fennell T., et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature 536 285–291. 10.1038/nature19057
    1. Manichaikul A., Mychaleckyj J. C., Rich S. S., Daly K., Sale M., Chen W. M. (2010). Robust relationship inference in genome-wide association studies. Bioinformatics 26 2867–2873. 10.1093/bioinformatics/btq559
    1. Matalova E., Antonarakis G. S., Sharpe P. T., Tucker A. S. (2005). Cell lineage of primary and secondary enamel knots. Dev. Dyn. 233 754–759. 10.1002/dvdy.20396
    1. Nelson P., Ngoc Tran T. D., Zhang H., Zolochevska O., Figueiredo M., Feng J. M., et al. (2013). Transient receptor potential melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation. Stem Cells 31 167–177. 10.1002/stem.1264
    1. Ngamphiw C., Assawamakin A., Xu S., Shaw P. J., Yang J. O., Ghang H., et al. (2011). PanSNPdb: the Pan-Asian SNP genotyping database. PLoS One 6:e21451. 10.1371/journal.pone.0021451
    1. Nissanka-Jayasuriya E. H., Odell E. W., Phillips C. (2016). Dental Stigmata of congenital syphilis: a historic review with present day relevance. Head Neck Pathol. 10 327–331. 10.1007/s12105-016-0703-z
    1. No Authors (1988). FDI Director calls on more countries to adopt the FDI two-digit tooth-numbering system. J. Ir. Dent. Assoc. 34 49.
    1. Ohazama A., Blackburn J., Porntaveetus T., Ota M. S., Choi H. Y., Johnson E. B., et al. (2010). A role for suppressed incisor cuspal morphogenesis in the evolution of mammalian heterodont dentition. Proc. Natl. Acad. Sci. U.S.A. 107 92–97. 10.1073/pnas.0907236107
    1. Punta M., Coggill P. C., Eberhardt R. Y., Mistry J., Tate J., Boursnell C., et al. (2012). The Pfam protein families database. Nucleic Acids Res. 40 D290–D301. 10.1093/nar/gkr1065
    1. Purcell S. M., Moran J. L., Fromer M., Ruderfer D., Solovieff N., Roussos P., et al. (2014). A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506 185–190. 10.1038/nature12975
    1. Rakian A., Yang W. C., Gluhak-Heinrich J., Cui Y., Harris M. A., Villarreal D., et al. (2013). Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium. Int. J. Oral Sci. 5 75–84. 10.1038/ijos.2013.41
    1. Ramachandran K. V., Hennessey J. A., Barnett A. S., Yin X., Stadt H. A., Foster E., et al. (2013). Calcium influx through L-type CaV1.2 Ca2+ channels regulates mandibular development. J. Clin. Invest. 123 1638–1646. 10.1172/JCI66903
    1. Reese M. G., Eeckman F. H., Kulp D., Haussler D. (1997). Improved splice site detection in Genie. J. Comput. Biol. 4 311–323. 10.1089/cmb.1997.4.311
    1. Schartner V., Romero N. B., Donkervoort S., Treves S., Munot P., Pierson T. M., et al. (2017). Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy. Acta Neuropathol. 133 517–533. 10.1007/s00401-016-1656-8
    1. Schwarz J. M., Cooper D. N., Schuelke M., Seelow D. (2014). MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods 11 361–362. 10.1038/nmeth.2890
    1. Shapiro M. B., Senapathy P. (1987). RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15 7155–7174. 10.1093/nar/15.17.7155
    1. Sherry S. T., Ward M. H., Kholodov M., Baker J., Phan L., Smigielski E. M., et al. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29 308–311. 10.1093/nar/29.1.308
    1. Skrinjaric T., Gorseta K., Skrinjaric I. (2016). Lobodontia: genetic entity with specific pattern of dental dysmorphology. Ann. Anat. 203 100–107. 10.1016/j.aanat.2015.04.007
    1. Splawski I., Timothy K. W., Sharpe L. M., Decher N., Kumar P., Bloise R., et al. (2004). Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119 19–31. 10.1016/j.cell.2004.09.011
    1. Stenson P. D., Mort M., Ball E. V., Howells K., Phillips A. D., Thomas N. S., et al. (2009). The human gene mutation database: 2008 update. Genome Med. 1:13. 10.1186/gm13
    1. Tada H., Nemoto E., Kanaya S., Hamaji N., Sato H., Shimauchi H. (2010). Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells. Biochem. Biophys. Res. Commun. 394 1093–1097. 10.1016/j.bbrc.2010.03.135
    1. Thesleff I., Jernvall J. (1997). The enamel knot: a putative signaling center regulating tooth development. Cold Spring Harb. Symp. Quant. Biol. 62 257–267. 10.1101/SQB.1997.062.01.032
    1. Thesleff I., Keranen S., Jernvall J. (2001). Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv. Dent. Res. 15 14–18. 10.1177/08959374010150010401
    1. Thesleff I., Mikkola M. L. (2014). Development of ectodermal organs. Semin. Cell Dev. Biol. 2 1–2. 10.1016/j.semcdb.2014.02.002
    1. Vaahtokari A., Aberg T., Jernvall J., Keranen S., Thesleff I. (1996). The enamel knot as a signaling center in the developing mouse tooth. Mech. Dev. 54 39–43. 10.1016/0925-4773(95)00459-9
    1. Vivante A., Ityel H., Pode-Shakked B., Chen J., Shril S., Van Der Ven A. T., et al. (2017). Exome sequencing in Jewish and Arab patients with rhabdomyolysis reveals single-gene etiology in 43% of cases. Pediatr. Nephrol. 32 2273–2282. 10.1007/s00467-017-3755-8
    1. Wang J., Feng J. Q. (2017). Signaling pathways critical for tooth root formation. J. Dent. Res. 96 1221–1228. 10.1177/0022034517717478
    1. Wong King Yuen S. M., Campiglio M., Tung C. C., Flucher B. E., Van Petegem F. (2017). Structural insights into binding of STAC proteins to voltage-gated calcium channels. Proc. Natl. Acad. Sci. U.S.A. 114 E9520–E9528. 10.1073/pnas.1708852114
    1. Wu F., Mi W., Hernandez-Ochoa E. O., Burns D. K., Fu Y., Gray H. F., et al. (2012). A calcium channel mutant mouse model of hypokalemic periodic paralysis. J. Clin. Invest. 122 4580–4591. 10.1172/JCI66091
    1. Yang J., Wang S. K., Choi M., Reid B. M., Hu Y., Lee Y. L., et al. (2015). Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. Mol. Genet. Genomic Med. 3 40–58. 10.1002/mgg3.111
    1. Yeo G., Burge C. B. (2004). Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11 377–394. 10.1089/1066527041410418
    1. Yoon G., Oberoi S., Tristani-Firouzi M., Etheridge S. P., Quitania L., Kramer J. H., et al. (2006). Andersen-Tawil syndrome: prospective cohort analysis and expansion of the phenotype. Am. J. Med. Genet. A 140 312–321. 10.1002/ajmg.a.31092

Source: PubMed

3
Sottoscrivi