Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia

Maurizio Cecconi, Nicola Fasano, Nicola Langiano, Michele Divella, Maria G Costa, Andrew Rhodes, Giorgio Della Rocca, Maurizio Cecconi, Nicola Fasano, Nicola Langiano, Michele Divella, Maria G Costa, Andrew Rhodes, Giorgio Della Rocca

Abstract

Introduction: Total hip replacement is one of the most commonly performed major orthopaedic operations. Goal-directed therapy (GDT) using haemodynamic monitoring has previously demonstrated outcome benefits in high-risk surgical patients under general anaesthesia. GDT has never been formally assessed during regional anaesthesia.

Methods: Patients undergoing total hip replacement while under regional anaesthesia were randomised to either the control group (CTRL) or the protocol group (GDT). Patients in the GDT group, in addition to standard monitoring, were connected to the FloTrac sensor/Vigileo monitor haemodynamic monitoring system, and a GDT protocol was used to maximise the stroke volume and target the oxygen delivery index to > 600 mL/minute/m2.

Results: Patients randomised to the GDT group were given a greater volume of intravenous fluids during the intraoperative period (means ± standard deviation (SD): 6,032 ± 1,388 mL vs. 2,635 ± 346 mL; P < 0.0001), and more of the GDT patients received dobutamine (0 of 20 CTRL patients vs. 11 of 20 GDT patients; P < 0.0003). The GDT patients also received more blood transfused during the intraoperative period (means ± SD: 595 ± 316 mL vs. 0 ± 0 mL; P < 0.0001), although the CTRL group received greater volumes of blood replacement postoperatively (CTRL patients 658 ± 68 mL vs. GDT patients 198 ± 292 mL; P < 0.001). Overall blood consumption (intraoperatively and postoperatively) was not different between the two groups. There were an increased number of complications in the CTRL group (20 of 20 CTRL patients (100%) vs. 16 of 20 GDT patients (80%); P = 0.05). These outcomes were predominantly due to a difference in minor complications (20 of 20 CTRL patients (100%) vs. 15 of 20 GDT patients (75%); P = 0.047).

Conclusions: GDT applied during regional anaesthesia in patients undergoing elective total hip replacement changes intraoperative fluid management and may improve patient outcomes by decreasing postoperative complications. Larger trials are required to confirm our findings.

Figures

Figure 1
Figure 1
Control group fluid management. MAP = mean arterial pressure; HES = hydroxyethyl starch.
Figure 2
Figure 2
Intraoperative goal-directed therapy protocol (GDT). GDT = goal-directed therapy group; SV max = maximum stroke volume; DO2I = oxygen delivery index; HES = hydroxyethyl starch; HR = heart rate; bpm = beats/minute.
Figure 3
Figure 3
Trends in heart rate and mean arterial pressure between control group and goal-directed therapy group. HR = heart rate; mAP = mean arterial pressure; GDT = goal-directed therapy group; CTRL = control group.

References

    1. Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet. 2007;370:1508–1519. doi: 10.1016/S0140-6736(07)60457-7.
    1. Beringer TR, Gilmore DH. Outcome following proximal femoral fracture in the elderly female. Ulster Med J. 1991;60:28–34.
    1. Swanson CE, Day GA, Yelland CE, Broome JR, Massey L, Richardson HR, Dimitri K, Marsh A. The management of elderly patients with femoral fractures: a randomised controlled trial of early intervention versus standard care. Med J Aust. 1998;169:515–518.
    1. Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, Grounds RM, Bennett ED. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care. 2006;10:R81. doi: 10.1186/cc4928.
    1. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94:1176–1186. doi: 10.1378/chest.94.6.1176.
    1. Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA. 1993;270:2699–2707. doi: 10.1001/jama.270.22.2699.
    1. Venn R, Steele A, Richardson P, Poloniecki J, Grounds M, Newman P. Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures. Br J Anaesth. 2002;88:65–71. doi: 10.1093/bja/88.1.65.
    1. Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, Dwane P, Glass PS. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97:820–826. doi: 10.1097/00000542-200210000-00012.
    1. Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ. 1997;315:909–912.
    1. Pölönen P, Ruokonen E, Hippeläinen M, Pöyhönen M, Takala J. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000;90:1052–1059. doi: 10.1097/00000539-200005000-00010.
    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Urwin SC, Parker MJ, Griffiths R. General versus regional anaesthesia for hip fracture surgery: a meta-analysis of randomized trials. Br J Anaesth. 2000;84:450–455.
    1. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay: a randomised, controlled trial [ISRCTN38797445] Crit Care. 2005;9:R687–R693. doi: 10.1186/cc3887.
    1. Wolters U, Wolf T, Stutzer H, Schroder T. ASA classification and perioperative variables as predictors of postoperative outcome. Br J Anaesth. 1996;77:217–222.
    1. Bennett-Guerrero E, Welsby I, Dunn TJ, Young LR, Wahl TA, Diers TL, Phillips-Bute BG, Newman MF, Mythen MG. The use of a postoperative morbidity survey to evaluate patients with prolonged hospitalization after routine, moderate-risk, elective surgery. Anesth Analg. 1999;89:514–519.
    1. Grocott MP, Browne JP, Van der Meulen J, Matejowsky C, Mutch M, Hamilton MA, Levett DZ, Emberton M, Haddad FS, Mythen MG. The Postoperative Morbidity Survey was validated and used to describe morbidity after major surgery. J Clin Epidemiol. 2007;60:919–928. doi: 10.1016/j.jclinepi.2006.12.003.
    1. Holte K, Kristensen BB, Valentiner L, Foss NB, Husted H, Kehlet H. Liberal versus restrictive fluid management in knee arthroplasty: a randomized, double-blind study. Anesth Analg. 2007;105:465–474. doi: 10.1213/01.ane.0000263268.08222.19.
    1. Dyer RA, Piercy JL, Reed AR, Lombard CJ, Schoeman LK, James MF. Hemodynamic changes associated with spinal anesthesia for cesarean delivery in severe preeclampsia. Anesthesiology. 2008;108:802–811. doi: 10.1097/01.anes.0000311153.84687.c7.
    1. Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–1722. doi: 10.1056/NEJM199406163302404.
    1. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R. for the SvO2 Collaborative Group. A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med. 1995;333:1025–1032. doi: 10.1056/NEJM199510193331601.
    1. Rhodes A, Cecconi M, Hamilton M, Poloniecki J, Woods J, Boyd O, Bennett D, Grounds RM. Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Med. 2010;36:1327–1332. doi: 10.1007/s00134-010-1869-6.
    1. Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112:1392–1402. doi: 10.1213/ANE.0b013e3181eeaae5.
    1. Noblett SE, Snowden CP, Shenton BK, Horgan AF. Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg. 2006;93:1069–1076. doi: 10.1002/bjs.5454.
    1. Khuri SF, Henderson WG, DePalma RG, Mosca C, Healey NA, Kumbhani DJ. Participants in the VA National Surgical Quality Improvement Program. Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann Surg. 2005;242:326–343.
    1. Rhodes A, Cusack RJ, Newman PJ, Grounds RM, Bennett ED. A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med. 2002;28:256–264. doi: 10.1007/s00134-002-1206-9.
    1. Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366:472–477. doi: 10.1016/S0140-6736(05)67061-4.
    1. Angelillo IF, Ricciardi G, Nante N, Boccia A, Bianco A, La Torre G, Vinci V, De Giusti M. Appropriateness of hospital utilisation in Italy. Public Health. 2000;114:9–14. doi: 10.1016/S0033-3506(00)00301-2.
    1. Daley J, Henderson WG, Khuri SF. Risk-adjusted surgical outcomes. Annu Rev Med. 2001;52:275–287. doi: 10.1146/annurev.med.52.1.275.

Source: PubMed

3
Sottoscrivi