In vitro and pilot in vivo imaging of 18 kDa translocator protein (TSPO) in inflammatory vascular disease

Romain Schollhammer, Sébastien Lepreux, Nicole Barthe, Delphine Vimont, Anne Rullier, Igor Sibon, Xavier Berard, Andrea Zhang, Yasuyuki Kimura, Masahiro Fujita, Robert B Innis, Paolo Zanotti-Fregonara, Clément Morgat, Romain Schollhammer, Sébastien Lepreux, Nicole Barthe, Delphine Vimont, Anne Rullier, Igor Sibon, Xavier Berard, Andrea Zhang, Yasuyuki Kimura, Masahiro Fujita, Robert B Innis, Paolo Zanotti-Fregonara, Clément Morgat

Abstract

Background: Inflammatory vascular disease of the arteries, such as inflamed atheromatous plaques or arteritis, may cause aneurysms or ischemic strokes. In this context, using positron emission tomography (PET) to image inflammation may help select patients who would benefit from appropriate therapeutic interventions. This study sought to assess the usefulness of the 18 kDa translocator protein (TSPO) tracers [11C]-PBR28 and [18F]-PBR06 for imaging inflammatory vascular disease in vitro and in vivo. Immunohistochemistry for macrophage infiltration as well as autoradiography with [18F]-PBR06 were performed on eight paraffin-embedded, formalin-fixed atherosclerosis plaques prospectively collected after carotid endarterectomy of eight patients affected by ischemic stroke. Six different patients, one of whom was also included in the in vitro study, underwent PET imaging. Two patients with carotid stenosis associated with ischemic stroke were imaged with [18F]-PBR06 PET/CT, and four other patients (three with large vessel vasculitis and one with bilateral carotid stenosis but without stroke) were imaged with [11C]-PBR28.

Results: All in vitro sections showed specific binding of [18F]-PBR06, which co-localized with immunohistochemistry markers for inflammation. However, in vivo TSPO imaging with either [11C]-PBR28 or [18F]-PBR06 was negative in all participants.

Conclusion: Despite good uptake on surgical samples in vitro, [11C]-PBR28 and [18F]-PBR06 are not viable clinical tools for imaging inflammatory vascular disease.

Trial registration: NCT02513589, registered 31 July 2015 and NCT00547976, registered 23 October 2007. https://clinicaltrials.gov .

Keywords: Atherosclerosis; Inflammation; PET/CT; TSPO; Vasculitis.

Conflict of interest statement

The authors have no conflict of interest to disclose, financial or otherwise.

Figures

Fig. 1
Fig. 1
Immunohistochemistry scoring of h-caldemon, α-smooth muscle actin (α-SMA), CD45, CD3 and CD68 investigated in this study. α-SMA and h-caldesmon stains were used to quantify the percentage of the fibrous rupture of the tunica media of the muscular arteries CD45, CD3, and CD68 stains assessed the count of leukocytes, T lymphocytes, and macrophages per 10 high magnification (× 400) fields, respectively
Fig. 2
Fig. 2
[18F]-PBR06 autoradiography at baseline (a) and after pre-incubation with cold [natF]-PBR06 (b) and HES anatomical sections (c) in a piece of carotid endarterectomy. A large atheromatous plaque with calcification invaded the intima and tunica media of the arterial wall (d, × 25). Immunohistochemistry showed destruction of the tunica media by the plaque (e, × 25), macrophage infiltration around the cholesterol clefts (f, × 25), and scattered T-lymphocytes (g, × 100) within the plaque. The brown bar in the upper left corner is a 1-mm scale bar
Fig. 3
Fig. 3
Co-localization of [18F]-PBR06 and CD68 macrophages. a CD68 immunohistochemistry. b fused image of [18F]-PBR06 micro-imaging and CD68 staining
Fig. 4
Fig. 4
Quantification of [18F]-PBR06 specific binding according to various areas of atheromatous plaque (whole plaque, macrophages, and smooth muscle compartment (SMC)) of all eight samples
Fig. 5
Fig. 5
A representative [18F]-PBR06 PET/CT (A, C) scan and angio-CT (B, D) scan. No uptake was observed on the right carotid atheromatous plaque

References

    1. Sirimarco G, Lavallée PC, Labreuche J, Meseguer E, Cabrejo L, Guidoux C, Klein IF, Olivot J-M, Abboud H, Adraï V, Kusmierek J, Ratani S, Touboul P-J, Mazighi M, Steg PG, Amarenco P. Overlap of diseases underlying ischemic stroke. Stroke. 2013;44:2427–2433. doi: 10.1161/STROKEAHA.113.001363.
    1. Weyand CM, Goronzy JJ. Medium- and large-vessel vasculitis. N Engl J Med. 2003;349:160–169. doi: 10.1056/NEJMra022694.
    1. Ravikanth R. Role of 18F-FDG positron emission tomography in carotid atherosclerotic plaque imaging: a systematic review. World J Nucl Med. 2020;19:327–335. doi: 10.4103/wjnm.WJNM_26_20.
    1. Mayer M, Borja AJ, Hancin EC, Auslander T, Revheim ME, Moghbel MC, Werner TJ, Alavi A, Rajapakse CS. Imaging atherosclerosis by PET, with emphasis on the role of FDG and NaF as potential biomarkers for this disorder. Front Physiol. 2020;11:1252. doi: 10.3389/fphys.2020.511391.
    1. Kopecky C, Pandzic E, Parmar A, Szajer J, Lee V, Dupuy A, Arthur A, Fok S, Whan R, Ryder WJ, Rye K-A, Cochran BJ. Translocator protein localises to CD11b+ macrophages in atherosclerosis. Atherosclerosis. 2019;284:153–159. doi: 10.1016/j.atherosclerosis.2019.03.011.
    1. Cuhlmann S, Gsell W, Van der Heiden K, Habib J, Tremoleda JL, Khalil M, Turkheimer F, Meens MJ, Kwak BR, Bird J, Davenport AP, Clark J, Haskard D, Krams R, Jones H, Evans PC. In vivo mapping of vascular inflammation using the translocator protein tracer 18F-FEDAA1106. Mol Imaging. 2014;13:7290.2014.00014. doi: 10.2310/7290.2014.00014.
    1. Fujimura Y, Hwang PM, Trout H, III, Kozloff L, Imaizumi M, Innis RB, Fujita M. Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with [3H]PK 11195. Atherosclerosis. 2008;201:108–111. doi: 10.1016/j.atherosclerosis.2008.02.032.
    1. Gaemperli O, Shalhoub J, Owen DRJ, Lamare F, Johansson S, Fouladi N, Davies AH, Rimoldi OE, Camici PG. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J. 2012;33:1902–1910. doi: 10.1093/eurheartj/ehr367.
    1. Turkheimer FE, Rizzo G, Bloomfield PS, Howes O, Zanotti-Fregonara P, Bertoldo A, Veronese M. The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans. 2015;43:586–592. doi: 10.1042/BST20150058.
    1. Cumming P, Burgher B, Patkar O, Breakspear M, Vasdev N, Thomas P, Liu G-J, Banati R. Sifting through the surfeit of neuroinflammation tracers. J Cereb Blood Flow Metab. 2018;38:204–224. doi: 10.1177/0271678X17748786.
    1. Zhang H, Xiao J, Zhou J, Tan H, Hu Y, Mao W, Fu Z, Lin Q, Shi H, Cheng D. 18F-PBR06 PET/CT imaging for evaluating atherosclerotic plaques linked to macrophage infiltration. Nucl Med Commun. 2019;40:370–376. doi: 10.1097/MNM.0000000000000978.
    1. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, Rhodes C, Pulford DJ, Bennacef I, Parker CA, StJean PL, Cardon LR, Mooser VE, Matthews PM, Rabiner EA, Rubio JP. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32:1–5. doi: 10.1038/jcbfm.2011.147.
    1. Reubi JC, Kvols LK, Waser B, Nagorney DM, Heitz PU, Charboneau JW, Reading CC, Moertel C. Detection of somatostatin receptors in surgical and percutaneous needle biopsy samples of carcinoids and islet cell carcinomas. Cancer Res. 1990;50:5969–5977.
    1. Morgat C, Schollhammer R, Macgrogan G, Barthe N, Vélasco V, Vimont D, Cazeau A-L, Fernandez P, Hindié E. Comparison of the binding of the gastrin-releasing peptide receptor (GRP-R) antagonist 68Ga-RM2 and 18F-FDG in breast cancer samples. PLoS ONE. 2019;14:e0210905. doi: 10.1371/journal.pone.0210905.
    1. Dickstein LP, Zoghbi SS, Fujimura Y, Imaizumi M, Zhang Y, Pike VW, Innis RB, Fujita M. Comparison of 18F- and 11C-labeled aryloxyanilide analogs to measure translocator protein in human brain using positron emission tomography. Eur J Nucl Med Mol Imaging. 2011;38:352–357. doi: 10.1007/s00259-010-1622-y.
    1. Hellberg S, Silvola JMU, Kiugel M, Liljenbäck H, Savisto N, Li X-G, Thiele A, Lehmann L, Heinrich T, Vollmer S, Hakovirta H, Laine VJO, Ylä-Herttuala S, Knuuti J, Roivainen A, Saraste A. 18-kDa translocator protein ligand 18F-FEMPA: biodistribution and uptake into atherosclerotic plaques in mice. J Nucl Cardiol. 2017;24:862–871. doi: 10.1007/s12350-016-0527-y.
    1. Wimberley C, Lavisse S, Hillmer A, Hinz R, Turkheimer F, Zanotti-Fregonara P. Kinetic modeling and parameter estimation of TSPO PET imaging in the human brain. Eur J Nucl Med Mol Imaging. 2021 doi: 10.1007/s00259-021-05248-9.
    1. Lamare F, Hinz R, Gaemperli O, Pugliese F, Mason JC, Spinks T, Camici PG, Rimoldi OE. Detection and quantification of large-vessel inflammation with 11C-(R)-PK11195 PET/CT. J Nucl Med. 2011;52:33–39. doi: 10.2967/jnumed.110.079038.

Source: PubMed

3
Sottoscrivi