Prevention of contrast-induced acute kidney injury: is simple oral hydration similar to intravenous? A systematic review of the evidence

Swapnil Hiremath, Ayub Akbari, Wael Shabana, Dean A Fergusson, Greg A Knoll, Swapnil Hiremath, Ayub Akbari, Wael Shabana, Dean A Fergusson, Greg A Knoll

Abstract

Background: Pre-procedural intravenous fluid administration is an effective prophylaxis measure for contrast-induced acute kidney injury. For logistical ease, the oral route is an alternative to the intravenous. The objective of this study was to compare the efficacy of the oral to the intravenous route in prevention of contrast-induced acute kidney injury.

Study design: A systematic review and meta-analysis of randomised trials with a stratified analysis and metaregression. Databases included MEDLINE (1950 to November 23 2011), EMBASE (1947 to week 47 2011), Cochrane CENTRAL (3(rd) quarter 2011). Two reviewers identified relevant trials and abstracted data. SETTINGS AND POPULATION: Trials including patients undergoing a contrast enhanced procedure.

Selection criteria: Randomised controlled trial; adult (>18 years) population; comparison of oral versus intravenous volume expansion.

Intervention: Oral route of volume expansion compared to the intravenous route.

Outcomes: Any measure of acute kidney injury, need for renal replacement therapy, hospitalization and death.

Results: Six trials including 513 patients met inclusion criteria. The summary odds ratio was 1.19 (95% CI 0.46, 3.10, p = 0.73) suggesting no difference between the two routes of volume expansion. There was significant heterogeneity (Cochran's Q = 11.65, p = 0.04; I(2) = 57). In the stratified analysis, inclusion of the five studies with a prespecified oral volume expansion protocol resulted in a shift towards oral volume expansion (OR 0.75, 95% CI 0.37, 1.50, p = 0.42) and also resolved the heterogeneity (Q = 3.19, P = 0.53; I(2) = 0).

Limitations: Small number of studies identified; lack of hard clinical outcomes.

Conclusion: The oral route may be as effective as the intravenous route for volume expansion for contrast-induced acute kidney injury prevention. Adequately powered trials with hard endpoints should be done given the potential advantages of oral (e.g. reduced patient burden and cost) over intravenous volume expansion.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. PRISMA Flow diagram.
Figure 1. PRISMA Flow diagram.
Figure 2. Forest plot of randomized trials…
Figure 2. Forest plot of randomized trials meeting inclusion criteria.
Size of data markers indicates the weight of the trial. Trials are ordered by year.
Figure 3. Funnel Plot showing the Peto…
Figure 3. Funnel Plot showing the Peto log odds ratio on the x-axis and the standard error on the y-axis.
There is no obvious asymmetry to suggest missing unpublished trials.
Figure 4. Forest plot including only trials…
Figure 4. Forest plot including only trials with a prespecified protocol for oral volume expansion showing resolution of heterogeneity.
Figure 5. Metaregression of the average total…
Figure 5. Metaregression of the average total contrast dose administered on the X-axis against the log Peto odds ratio on the Y-axis.
This shows that there is a significant trend towards lower CI-AKI with intravenous expansion compared to oral expansion as the contrast dose increases.
Figure 6. Metaregression of the proportion of…
Figure 6. Metaregression of the proportion of patients with diabetes in a trial on the X-axis against the log Peto odds ratio on the Y-axis.
This shows that there is a significant trend to greater benefit with oral volume expansion in trials with a higher proportion of diabetic patients.

References

    1. Katzberg RW, Haller C (2006) Contrast-induced nephrotoxicity: clinical landscape. Kidney Int Suppl: S3–7.
    1. Hou SH, Bushinsky DA, Wish JB, Cohen JJ, Harrington JT (1983) Hospital-acquired renal insufficiency: a prospective study. Am J Med 74: 243–248.
    1. Nash K, Hafeez A, Hou S (2002) Hospital-acquired renal insufficiency. Am J Kidney Dis 39: 930–936.
    1. Gruberg L, Mehran R, Dangas G, Mintz GS, Waksman R, et al. (2001) Acute renal failure requiring dialysis after percutaneous coronary interventions. Catheter Cardiovasc Interv 52: 409–416.
    1. James MT, Ghali WA, Knudtson ML, Ravani P, Tonelli M, et al. (2011) Associations between acute kidney injury and cardiovascular and renal outcomes after coronary angiography. Circulation 123: 409–416.
    1. McCullough PA, Wolyn R, Rocher LL, Levin RN, O’Neill WW (1997) Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med 103: 368–375.
    1. American College of Radiology A (2010) ACR Manual on Contrast Media. 25–29.
    1. Klein LW, Sheldon MW, Brinker J, Mixon TA, Skelding K, et al. (2009) The use of radiographic contrast media during PCI: a focused review: a position statement of the Society of Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv 74: 728–746.
    1. McCullough PA, Stacul F, Becker CR, Adam A, Lameire N, et al. (2006) Contrast-Induced Nephropathy (CIN) Consensus Working Panel: executive summary. Rev Cardiovasc Med 7: 177–197.
    1. The Royal Australian and New Zealand College of Radiologists R (2009) Guidelines For Iodinated Contrast Administration. The Royal Australian and New Zealand College of Radiologists. 14–17.
    1. Stacul F, Adam A, Becker CR, Davidson C, Lameire N, et al. (2006) Strategies to reduce the risk of contrast-induced nephropathy. Am J Cardiol 98: 59K–77K.
    1. Stacul F, van der Molen AJ, Reimer P, Webb JA, Thomsen HS, et al. (2011) Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 21: 2527–2541.
    1. Wright RS, Anderson JL, Adams CD, Bridges CR, Casey DE Jr, et al. (2011) 2011 ACCF/AHA Focused Update of the Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction (Updating the 2007 Guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 123: 2022–2060.
    1. Persson PB, Hansell P, Liss P (2005) Pathophysiology of contrast medium-induced nephropathy. Kidney Int 68: 14–22.
    1. Mueller C, Buerkle G, Buettner HJ, Petersen J, Perruchoud AP, et al. (2002) Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med 162: 329–336.
    1. Brar SS, Shen AY, Jorgensen MB, Kotlewski A, Aharonian VJ, et al. (2008) Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography: a randomized trial. JAMA 300: 1038–1046.
    1. Brar SS, Hiremath S, Dangas G, Mehran R, Brar SK, et al. (2009) Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol 4: 1584–1592.
    1. Cho R, Javed N, Traub D, Kodali S, Atem F, et al. (2010) Oral hydration and alkalinization is noninferior to intravenous therapy for prevention of contrast-induced nephropathy in patients with chronic kidney disease. J Interv Cardiol 23: 460–466.
    1. Kim SM, Cha R, Lee JP, Kim DK, Oh KH, et al. (2010) Incidence and Outcomes of Contrast-Induced Nephropathy After Computed Tomography in Patients With CKD: A Quality Improvement Report. American Journal of Kidney Diseases 55: 1018–1025.
    1. Weisbord SD, Mor MK, Resnick AL, Hartwig KC, Palevsky PM, et al. (2008) Incidence and outcomes of contrast-induced AKI following computed tomography. Clinical Journal of The American Society of Nephrology 3: 1274–1281.
    1. Dial J (2012) Location of CT Scan Centres in Mumbai. Available: . Accessed 2012 Feb 25.
    1. Weisbord SD, Mor MK, Kim S, Hartwig KC, Sonel AF, et al. (2009) Factors associated with the use of preventive care for contrast-induced acute kidney injury. Journal of General Internal Medicine 24: 289–298.
    1. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, et al. (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17: 1–12.
    1. Egger M DSG, Altman D, editor (1997) Systematic Reviews in Health Care. Second ed. London, UK: BMJ Books. 487 p.
    1. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177–188.
    1. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.
    1. Moher D, Altman DG, Liberati A, Tetzlaff J (2011) PRISMA statement. Epidemiology 22: 128.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8: 336–341.
    1. Dussol B, Morange S, Loundoun A, Auquier P, Berland Y (2006) A randomized trial of saline hydration to prevent contrast nephropathy in chronic renal failure patients. Nephrology Dialysis Transplantation 21: 2120–2126.
    1. Lawlor DK, Moist L, DeRose G, Harris KA, Lovell MB, et al. (2007) Prevention of contrast-induced nephropathy in vascular surgery patients. Ann Vasc Surg 21: 593–597.
    1. Taylor AJ, Hotchkiss D, Morse RW, McCabe J (1998) PREPARED: Preparation for Angiography in Renal Dysfunction: a randomized trial of inpatient vs outpatient hydration protocols for cardiac catheterization in mild-to-moderate renal dysfunction. Chest 114: 1570–1574.
    1. Trivedi HS, Moore H, Nasr S, Aggarwal K, Agrawal A, et al. (2003) A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin Pract 93: C29–34.
    1. Wrobel W, Sinkiewicz W, Gordon M, Wozniak-Wisniewska A (2010) Oral versus intravenous hydration and renal function in diabetic patients undergoing percutaneous coronary interventions. Kardiol Pol 68: 1015–1020.
    1. Endre ZH, Pickering JW (2010) Outcome definitions in non-dialysis intervention and prevention trials in acute kidney injury (AKI). Nephrol Dial Transplant 25: 107–118.
    1. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, et al. (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11: R31.
    1. Brar SS, Hiremath S, Dangas G, Mehran R, Brar SK, et al. (2009) Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: A systematic review and meta-analysis. Clinical Journal of the American Society of Nephrology 4 (10): 1584–1592.
    1. Duggan C, Santosham M, Glass RI (1992) The management of acute diarrhea in children: oral rehydration, maintenance, and nutritional therapy. Centers for Disease Control and Prevention. MMWR Recomm Rep 41: 1–20.
    1. Ishikawa T, Tamura H, Ishiguro H, Yamaguchi K, Minami K (2010) Effect of oral rehydration solution on fatigue during outdoor work in a hot environment: a randomized crossover study. J Occup Health 52: 209–215.
    1. Victora CG, Bryce J, Fontaine O, Monasch R (2000) Reducing deaths from diarrhoea through oral rehydration therapy. Bull World Health Organ 78: 1246–1255.
    1. Sheldon WC (2001) Trends in cardiac catheterization laboratories in the United States. Catheter Cardiovasc Interv 53: 40–45.
    1. To P, Chahadi F, Freeman M, Pan M, Farouque O, et al... (2011) A comparison of oral and intravenous sodium bicarbonate on urinary alkalinization in patients at risk of contrast-induced nephropathy: A PILOT study. Nephrology 47th Annual Scientific Meeting of the Australian and New Zealand Society of Nephrology Adelaide, SA Australia. : 57.
    1. Smith GD, Egger M (1994) Who benefits from medical interventions? BMJ 308: 72–74.
    1. McCullough PA, Adam A, Becker CR, Davidson C, Lameire N, et al. (2006) Risk prediction of contrast-induced nephropathy. Am J Cardiol 98: 27K–36K.
    1. Cigarroa RG, Lange RA, Williams RH, Hillis LD (1989) Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. American Journal of Medicine: 649–652.
    1. Marenzi G, Assanelli E, Campodonico J, Lauri G, Marana I, et al. (2009) Contrast volume during primary percutaneous coronary intervention and subsequent contrast-induced nephropathy and mortality. Ann Intern Med 150: 170–177.
    1. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, et al. (2004) A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol 44: 1393–1399.
    1. Reade MC, Delaney A, Bailey MJ, Angus DC (2008) Bench-to-bedside review: avoiding pitfalls in critical care meta-analysis–funnel plots, risk estimates, types of heterogeneity, baseline risk and the ecologic fallacy. Crit Care 12: 220.
    1. Merten GJ, Burgess WP, Gray LV, Holleman JH, Roush TS, et al. (2004) Prevention of contrast-induced nephropathy with sodium bicarbonate: A randomized controlled trial. Journal of the American Medical Association 291 (19): 2328–2334.
    1. Katzberg RW, Newhouse JH (2010) Intravenous contrast medium-induced nephrotoxicity: is the medical risk really as great as we have come to believe? Radiology 256: 21–28.

Source: PubMed

3
Sottoscrivi