Insulin-mediated muscle microvascular perfusion and its phenotypic predictors in humans

Kaitlin M Love, Linda A Jahn, Lee M Hartline, James T Patrie, Eugene J Barrett, Zhenqi Liu, Kaitlin M Love, Linda A Jahn, Lee M Hartline, James T Patrie, Eugene J Barrett, Zhenqi Liu

Abstract

Insulin increases muscle microvascular perfusion and enhances tissue insulin and nutrient delivery. Our aim was to determine phenotypic traits that foretell human muscle microvascular insulin responses. Hyperinsulinemic euglycemic clamps were performed in 97 adult humans who were lean and healthy, had class 1 obesity without comorbidities, or controlled type 1 diabetes without complications. Insulin-mediated whole-body glucose disposal rates (M-value) and insulin-induced changes in muscle microvascular blood volume (ΔMBV) were determined. Univariate and multivariate analyses were conducted to examine bivariate and multivariate relationships between outcomes, ΔMBV and M-value, and predictor variables, body mass index (BMI), total body weight (WT), percent body fat (BF), lean body mass, blood pressure, maximum consumption of oxygen (VO2max), plasma LDL (LDL-C) and HDL cholesterol, triglycerides (TG), and fasting insulin (INS) levels. Among all factors, only M-value (r = 0.23, p = 0.02) and VO2max (r = 0.20, p = 0.047) correlated with ΔMBV. Conversely, INS (r = - 0.48, p ≤ 0.0001), BF (r = - 0.54, p ≤ 0.001), VO2max (r = 0.5, p ≤ 0.001), BMI (r = - 0.40, p < 0.001), WT (r = - 0.33, p = 0.001), LDL-C (r = - 0.26, p = 0.009), TG (r = - 0.25, p = 0.012) correlated with M-value. While both ΔMBV (p = 0.045) and TG (p = 0.03) provided significant predictive information about M-value in the multivariate regression model, only M-value was uniquely predictive of ΔMBV (p = 0.045). Thus, both M-value and VO2max correlated with ΔMBV but only M-value provided unique predictive information about ΔMBV. This suggests that metabolic and microvascular insulin responses are important predictors of one another, but most metabolic insulin resistance predictors do not predict microvascular insulin responses.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Bivariate relationships between M-value and prediction variables. (A) Pearson correlations between M-value and subject characteristics. The vertical lines indicate the 95% confidence interval for the correlation coefficient. (BF) Relationships between M-value and individual predictor variables. The red lines represent the ordinary least squares linear regressions. (G) Relationship between M-value and cardiorespiratory fitness. ΔMBV, insulin-mediated change in muscle microvascular blood volume; BMI, body mass index; BP, blood pressure; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; TRI, triglycerides; VO2max, maximum consumption of oxygen (mL/kg/min); VO2 fitness, level of cardiorespiratory fitness by tertile. Plotting symbols: Healthy°, Obese˟, Type 1 diabetesΔ.
Figure 2
Figure 2
Bivariate relationships between ΔMBV and prediction variables. (A) Pearson correlations between ΔMBV and subject characteristics. The vertical lines indicate the 95% confidence interval for the correlation coefficient. (BF) Relationships between ΔMBV and individual predictor variables. The red lines represent the ordinary least squares linear regressions. (G) Relationship between ΔMBV and cardiorespiratory fitness. BMI, body mass index; BP, blood pressure; HDL, high-density lipoprotein cholesterol; LDL, low density lipoprotein cholesterol; TRI, triglycerides; VO2max, maximum consumption of oxygen (mL/kg/min); VO2 fitness, level of cardiorespiratory fitness by tertile. Plotting symbols: Healthy°, Obese˟, Type 1 diabetesΔ.
Figure 3
Figure 3
Sex comparisons between M-values corrected for lean body mass (A) and ΔMBV (B). P-values represent unpaired t-tests with Welch’s correction.

References

    1. Kaul K, Apostolopoulou M, Roden M. Insulin resistance in type 1 diabetes mellitus. Metabolism. 2015;64:1629–1639. doi: 10.1016/j.metabol.2015.09.002.
    1. Clerk LH, et al. Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes. 2006;55:1436–1442. doi: 10.2337/db05-1373.
    1. Gregory JM, Cherrington AD, Moore DJ. The peripheral peril: Injected insulin induces insulin insensitivity in type 1 diabetes. Diabetes. 2020;69:837–847. doi: 10.2337/dbi19-0026.
    1. Bressler P, Bailey SR, Matsuda M, DeFronzo RA. Insulin resistance and coronary artery disease. Diabetologia. 1996;39:1345–1350. doi: 10.1007/s001250050581.
    1. Bjornstad P, et al. Estimated insulin sensitivity predicts incident micro- and macrovascular complications in adults with type 1 diabetes over 6 years: The coronary artery calcification in type 1 diabetes study. J. Diabetes Complicat. 2016;30:586–590. doi: 10.1016/j.jdiacomp.2016.02.011.
    1. Matthews DR, et al. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. McAuley KA, et al. Diagnosing insulin resistance in the general population. Diabetes Care. 2001;24:460–464. doi: 10.2337/diacare.24.3.460.
    1. Katz A, et al. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000;85:2402–2410. doi: 10.1210/jcem.85.7.6661.
    1. Caro JF, et al. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J. Clin. Investig. 1987;79:1330–1337. doi: 10.1172/JCI112958.
    1. Duncan JG, Fong JL, Medeiros DM, Finck BN, Kelly DP. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation. 2007;115:909–917. doi: 10.1161/CIRCULATIONAHA.106.662296.
    1. Groop LC, et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J. Clin. Investig. 1989;84:205–213. doi: 10.1172/JCI114142.
    1. Basu R, Chandramouli V, Dicke B, Landau B, Rizza R. Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis. Diabetes. 2005;54:1942–1948. doi: 10.2337/diabetes.54.7.1942.
    1. Barrett EJ, et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009;52:752–764. doi: 10.1007/s00125-009-1313-z.
    1. Vincent MA, et al. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004;53:1418–1423. doi: 10.2337/diabetes.53.6.1418.
    1. Baron AD, Laakso M, Brechtel G, Edelman SV. Mechanism of insulin resistance in insulin-dependent diabetes mellitus: A major role for reduced skeletal muscle blood flow. J. Clin. Endocrinol. Metab. 1991;73:637–643. doi: 10.1210/jcem-73-3-637.
    1. Zhao L, et al. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity. Clin. Sci. 2015;129:1025–1036. doi: 10.1042/CS20150143.
    1. Eggleston EM, Jahn LA, Barrett EJ. Early microvascular recruitment modulates subsequent insulin-mediated skeletal muscle glucose metabolism during lipid infusion. Diabetes Care. 2013;36:104–110. doi: 10.2337/dc11-2399.
    1. Chan A, Barrett EJ, Anderson SM, Kovatchev BP, Breton MD. Muscle microvascular recruitment predicts insulin sensitivity in middle-aged patients with type 1 diabetes mellitus. Diabetologia. 2012;55:729–736. doi: 10.1007/s00125-011-2402-3.
    1. Zhao L, et al. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses. J. Physiol. 2015;593:4067–4079. doi: 10.1113/JP270371.
    1. Chai W, et al. Salsalate attenuates free fatty acid-induced microvascular and metabolic insulin resistance in humans. Diabetes Care. 2011;34:1634–1638. doi: 10.2337/dc10-2345.
    1. Subaran SC, et al. GLP-1 at physiological concentrations recruits skeletal and cardiac muscle microvasculature in healthy humans. Clin. Sci. 2014;127:163–170. doi: 10.1042/CS20130708.
    1. Wang N, et al. Vasodilatory actions of glucagon-like peptide 1 are preserved in skeletal and cardiac muscle microvasculature but not in conduit artery in obese humans with vascular insulin resistance. Diabetes Care. 2019;43:634–642. doi: 10.2337/dc19-1465.
    1. Pescatello, L., Arena, R., Riebe, D. & Thompson, P. Vol. III, 88–92 (Lippincott Williams & Wilkins, 2014).
    1. James D, Umekwe N, Edeoga C, Nyenwe E, Dagogo-Jack S. Multi-year reproducibility of hyperinsulinemic euglycemic clamp-derived insulin sensitivity in free-living adults: Association with incident prediabetes in the POP-ABC study. Metabolism. 2020;109:154263. doi: 10.1016/j.metabol.2020.154263.
    1. Ferrannini E, et al. Effect of insulin on the distribution and disposition of glucose in man. J. Clin. Investig. 1985;76:357–364. doi: 10.1172/jci111969.
    1. Tan AWK, et al. GLP-1 and insulin recruit muscle microvasculature and dilate conduit artery individually but not additively in healthy humans. J. Endocr. Soc. 2018;2:190–206. doi: 10.1210/js.2017-00446.
    1. Keske MA, Clerk LH, Price WJ, Jahn LA, Barrett EJ. Obesity blunts microvascular recruitment in human forearm muscle after a mixed meal. Diabetes Care. 2009;32:1672–1677. doi: 10.2337/dc09-0206.
    1. Liu Z, Liu J, Jahn LA, Fowler DE, Barrett EJ. Infusing lipid raises plasma free fatty acids and induces insulin resistance in muscle microvasculature. J. Clin. Endocrinol. Metab. 2009;94:3543–3549. doi: 10.1210/jc.2009-0027.
    1. Sjøberg KA, et al. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes. 2017;66:1501–1510. doi: 10.2337/db16-1327.
    1. Inyard AC, Chong DG, Klibanov AL, Barrett EJ. Muscle contraction, but not insulin, increases microvascular blood volume in the presence of free fatty acid-induced insulin resistance. Diabetes. 2009;58:2457–2463. doi: 10.2337/db08-1077.
    1. Chai W, Zhang X, Barrett EJ, Liu Z. Glucagon-like peptide 1 recruits muscle microvasculature and improves insulin's metabolic action in the presence of insulin resistance. Diabetes. 2014;63:2788–2799. doi: 10.2337/db13-1597.
    1. Chai W, Fu Z, Aylor KW, Barrett EJ, Liu Z. Liraglutide prevents microvascular insulin resistance and preserves muscle capillary density in high-fat diet-fed rats. Am. J. Physiol. Endocrinol. Metab. 2016;311:E640–648. doi: 10.1152/ajpendo.00205.2016.
    1. Chai W, et al. Angiotensin II type 1 and type 2 receptors regulate basal skeletal muscle microvascular volume and glucose use. Hypertension. 2010;55:523–530. doi: 10.1161/HYPERTENSIONAHA.109.145409.
    1. Cheatham B, et al. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell Biol. 1994;14:4902–4911. doi: 10.1128/mcb.14.7.4902.
    1. Kodama S, et al. Association between physical activity and risk of all-cause mortality and cardiovascular disease in patients with diabetes: A meta-analysis. Diabetes Care. 2013;36:471–479. doi: 10.2337/dc12-0783.
    1. Schenk S, Horowitz JF. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J. Clin. Investig. 2007;117:1690–1698. doi: 10.1172/JCI30566.
    1. Lee S, Bacha F, Gungor N, Arslanian SA. Cardiorespiratory fitness in youth: Relationship to insulin sensitivity and beta-cell function. Obesity. 2006;14:1579–1585. doi: 10.1038/oby.2006.182.
    1. Brennan AM, Lam M, Stotz P, Hudson R, Ross R. Exercise-induced improvement in insulin sensitivity is not mediated by change in cardiorespiratory fitness. Diabetes Care. 2014;37:e95–97. doi: 10.2337/dc13-1791.
    1. Blond MB, et al. How does 6 months of active bike commuting or leisure-time exercise affect insulin sensitivity, cardiorespiratory fitness and intra-abdominal fat? A randomised controlled trial in individuals with overweight and obesity. Br. J. Sports Med. 2019;53:1183–1192. doi: 10.1136/bjsports-2018-100036.
    1. Segal KR, et al. Effect of exercise training on insulin sensitivity and glucose metabolism in lean, obese, and diabetic men. J. Appl. Physiol. 1991;1985(71):2402–2411. doi: 10.1152/jappl.1991.71.6.2402.
    1. Vincent MA, et al. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am. J. Physiol. Endocrinol. Metab. 2006;290:E1191–1197. doi: 10.1152/ajpendo.00497.2005.
    1. Russell RD, et al. Skeletal muscle microvascular-linked improvements in glycemic control from resistance training in individuals with type 2 diabetes. Diabetes Care. 2017;40:1256–1263. doi: 10.2337/dc16-2750.
    1. Laakso M. How good a marker is insulin level for insulin resistance? Am. J. Epidemiol. 1993;137:959–965. doi: 10.1093/oxfordjournals.aje.a116768.
    1. Millstein RJ, et al. Sex-specific differences in insulin resistance in type 1 diabetes: The CACTI cohort. J. Diabetes Complicat. 2018;32:418–423. doi: 10.1016/j.jdiacomp.2018.01.002.
    1. Dengel DR, Jacobs DR, Steinberger J, Moran AM, Sinaiko AR. Gender differences in vascular function and insulin sensitivity in young adults. Clin. Sci. 2011;120:153–160. doi: 10.1042/CS20100223.
    1. Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes. 1997;46:1579–1585. doi: 10.2337/diacare.46.10.1579.
    1. Festa A, et al. Chronic subclinical inflammation as part of the insulin resistance syndrome: The Insulin Resistance Atherosclerosis Study (IRAS) Circulation. 2000;102:42–47. doi: 10.1161/01.cir.102.1.42.
    1. Haverkate F, Thompson SG, Pyke SD, Gallimore JR, Pepys MB. Production of C-reactive protein and risk of coronary events in stable and unstable angina. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. Lancet. 1997;349:462–466. doi: 10.1016/s0140-6736(96)07591-5.
    1. Newgard CB, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–326. doi: 10.1016/j.cmet.2009.02.002.
    1. Perseghin G, et al. Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N. Engl. J. Med. 1996;335:1357–1362. doi: 10.1056/nejm199610313351804.
    1. Wadley GD, et al. Increased insulin-stimulated Akt pSer473 and cytosolic SHP2 protein abundance in human skeletal muscle following acute exercise and short-term training. J. Appl. Physiol. 2007;102:1624–1631. doi: 10.1152/japplphysiol.00821.2006.
    1. Cusi K, et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J. Clin. Investig. 2000;105:311–320. doi: 10.1172/JCI7535.
    1. Patik JC, et al. Sex differences in the mechanisms mediating blunted cutaneous microvascular function in young black men and women. Am. J. Physiol. Heart Circ. Physiol. 2018;315:H1063–h1071. doi: 10.1152/ajpheart.00142.2018.
    1. Ozkor MA, et al. Differences in vascular nitric oxide and endothelium-derived hyperpolarizing factor bioavailability in blacks and whites. Arterioscler. Thromb. Vasc. Biol. 2014;34:1320–1327. doi: 10.1161/atvbaha.113.303136.

Source: PubMed

3
Sottoscrivi