Probiotic Supplementation and Micronutrient Status in Healthy Subjects: A Systematic Review of Clinical Trials

Bahareh Barkhidarian, Lucas Roldos, Michèle M Iskandar, Ahmad Saedisomeolia, Stan Kubow, Bahareh Barkhidarian, Lucas Roldos, Michèle M Iskandar, Ahmad Saedisomeolia, Stan Kubow

Abstract

Micronutrient deficiencies are a worldwide public health concern. Emerging evidence supports the ability of probiotics to enhance micronutrient status, which could aid in the prevention of non-communicable disease-associated malnutrition. This systematic review evaluated evidence of the efficacy of probiotic supplementation to improve micronutrient status in healthy subjects. The authors searched for published English language peer-reviewed journal articles in PubMed, Scopus, Embase, and Google Scholar databases from inception to July 2020 using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The quality of eligible studies was assessed using the Revised Cochrane Risk-of-Bias tool (RoB)2 and Risk of Bias in Non-Randomized Studies of Interventions tool (ROBINS-I tool). Fourteen original studies out of 2790 met the inclusion criteria. The results indicated that, despite varying degrees of efficacy, the intake of certain probiotics in healthy subjects was associated with a positive impact on the status of certain micronutrients (vitamin B12, calcium, folate, iron and zinc). A limitation was that studies were widely heterogeneous in terms of participant age, probiotic strain, species, dosage, intervention duration, and form of administration. Additional clinical trials are warranted to determine the most effective strains of probiotics, doses and durations of interventions.

Keywords: B vitamins; calcium; folate; iron; micronutrients; probiotics; vitamin A; vitamin D; vitamin E; zinc.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Search and inclusion process flow chart of studies to include in this systematic review of the association between probiotic supplementation and micronutrient status in healthy subjects.

References

    1. Tulchinsky T.H. Micronutrient deficiency conditions: Global health issues. Public Health Rev. 2010;32:243. doi: 10.1007/BF03391600.
    1. Diaz J., De Las Cagigas A., Rodriguez R. Micronutrient deficiencies in developing and affluent countries. Eur. J. Clin. Nutr. 2003;57:S70–S72. doi: 10.1038/sj.ejcn.1601820.
    1. Keats E.C., Neufeld L.M., Garrett G.S., Mbuya M.N.N., Bhutta Z.A. Improved micronutrient status and health outcomes in low- and middle-income countries following large-scale fortification: Evidence from a systematic review and meta-analysis. Am. J. Clin. Nutr. 2019;109:1696–1708. doi: 10.1093/ajcn/nqz023.
    1. LeBlanc J.G., Milani C., De Giori G.S., Sesma F., Van Sinderen D., Ventura M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 2013;24:160–168. doi: 10.1016/j.copbio.2012.08.005.
    1. Willing B., Van Kessel A. Host pathways for recognition: Establishing gastrointestinal microbiota as relevant in animal health and nutrition. Livest. Sci. 2010;133:82–91. doi: 10.1016/j.livsci.2010.06.031.
    1. WHO. Food and Agriculture Organization of the United Nations . Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation. Amerian Córdoba Park Hotel; Córdoba, Argentina: 2001. Report of a Joint FAO/WHO expert consultation of evaluations of health and nutritional properties of probiotics in food including powder milk and live lactic acid bacteria in Cordoba, Argentina.
    1. Martín R., Langella P. Emerging health concepts in the probiotics field: Streamlining the definitions. Front. Microbiol. 2019;10:1047. doi: 10.3389/fmicb.2019.01047.
    1. Mokoena M.P., Mutanda T., Olaniran A.O. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages. J. Food Nutr. Res. 2016;60:29630. doi: 10.3402/fnr.v60.29630.
    1. Bezkorovainy A. Probiotics: Determinants of survival and growth in the gut. Am. J. Clin. Nutr. 2001;73:399s–405s. doi: 10.1093/ajcn/73.2.399s.
    1. Pompei A., Cordisco L., Amaretti A., Zanoni S., Matteuzzi D., Rossi M. Folate production by bifidobacteria as a potential probiotic property. Appl. Environ. Microbiol. 2007;73:179–185. doi: 10.1128/AEM.01763-06.
    1. Pompei A., Cordisco L., Amaretti A., Zanoni S., Raimondi S., Matteuzzi D., Rossi M. Administration of folate-producing bifidobacteria enhances folate status in Wistar rats. J. Nutr. 2007;137:2742–2746. doi: 10.1093/jn/137.12.2742.
    1. Sheridan P.O., Bindels L.B., Saulnier D.M., Reid G., Nova E., Holmgren K., O’Toole P.W., Bunn J., Delzenne N., Scott K.P. Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals? Gut Microbes. 2014;5:74–82. doi: 10.4161/gmic.27252.
    1. Bering S., Suchdev S., Sjøltov L., Berggren A., Tetens I., Bukhave K. A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age. Br. J. Nutr. 2006;96:80–85. doi: 10.1079/BJN20061683.
    1. Jones M.L., Martoni C.J., Prakash S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: A post hoc analysis of a randomized controlled trial. J. Clin. Endocrinol. Metab. 2013;98:2944–2951. doi: 10.1210/jc.2012-4262.
    1. Hollander D., Muralidhara K., Zimmerman A. Vitamin D-3 intestinal absorption in vivo: Influence of fatty acids, bile salts, and perfusate pH on absorption. Gut. 1978;19:267–272. doi: 10.1136/gut.19.4.267.
    1. Narva M., Nevala R., Poussa T., Korpela R. The effect of Lactobacillus helveticus fermented milk on acute changes in calcium metabolism in postmenopausal women. Eur. J. Nutr. 2004;43:61–68. doi: 10.1007/s00394-004-0441-y.
    1. Hemarajata P., Versalovic J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Ther. Adv. Gastroenterol. 2013;6:39–51. doi: 10.1177/1756283X12459294.
    1. Campana R., van Hemert S., Baffone W. Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog. 2017;9:12. doi: 10.1186/s13099-017-0162-4.
    1. Capozzi V., Russo P., Dueñas M.T., López P., Spano G. Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Appl. Microbiol. Biotechnol. 2012;96:1383–1394. doi: 10.1007/s00253-012-4440-2.
    1. Crittenden R., Martinez N., Playne M. Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int. J. Food Microbiol. 2003;80:217–222. doi: 10.1016/S0168-1605(02)00170-8.
    1. LeBlanc J., Laiño J.E., del Valle M.J., Vannini V., van Sinderen D., Taranto M.P., de Valdez G.F., de Giori G.S., Sesma F. B-Group vitamin production by lactic acid bacteria–current knowledge and potential applications. J. Appl. Microbiol. 2011;111:1297–1309. doi: 10.1111/j.1365-2672.2011.05157.x.
    1. LeBlanc J.G., Chain F., Martín R., Bermúdez-Humarán L.G., Courau S., Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Factories. 2017;16:79. doi: 10.1186/s12934-017-0691-z.
    1. Rossi M., Amaretti A., Raimondi S. Folate Production by Probiotic Bacteria. Nutrients. 2011;3:118–134. doi: 10.3390/nu3010118.
    1. Hoppe M., Önning G., Hulthén L. Freeze-dried Lactobacillus plantarum 299v increases iron absorption in young females—Double isotope sequential single-blind studies in menstruating women. PLoS ONE. 2017;12:e0189141. doi: 10.1371/journal.pone.0189141.
    1. Scheers N., Rossander-Hulthen L., Torsdottir I., Sandberg A.-S. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe3+) Eur. J. Nutr. 2016;55:373–382. doi: 10.1007/s00394-015-0857-6.
    1. Skrypnik K., Bogdanski P., Schmidt M., Suliburska J. The Effect of Multispecies Probiotic Supplementation on Iron Status in Rats. Biol. Trace Elem. Res. 2019;192:234–243. doi: 10.1007/s12011-019-1658-1.
    1. Kelleher S.L., Casas I., Carbajal N., Lonnerdal B. Supplementation of infant formula with the probiotic lactobacillus reuteri and zinc: Impact on enteric infection and nutrition in infant rhesus monkeys. J. Pediatr. Gastroenterol. Nutr. 2002;35:162–168. doi: 10.1097/00005176-200208000-00011.
    1. Silva M.R., Dias G., Ferreira C.L., Franceschini S.C., Costa N.M. Growth of preschool children was improved when fed an iron-fortified fermented milk beverage supplemented with Lactobacillus acidophilus. Nutr. Res. 2008;28:226–232. doi: 10.1016/j.nutres.2008.02.002.
    1. Simeoni M., Citraro M.L., Cerantonio A., Deodato F., Provenzano M., Cianfrone P., Capria M., Corrado S., Libri E., Comi A. An open-label, randomized, placebo-controlled study on the effectiveness of a novel probiotics administration protocol (ProbiotiCKD) in patients with mild renal insufficiency (stage 3a of CKD) Eur. J. Nutr. 2019;58:2145–2156. doi: 10.1007/s00394-018-1785-z.
    1. Mokhtari Z., Karbaschian Z., Pazouki A., Kabir A., Hedayati M., Mirmiran P., Hekmatdoost A. The Effects of Probiotic Supplements on Blood Markers of Endotoxin and Lipid Peroxidation in Patients Undergoing Gastric Bypass Surgery; a Randomized, Double-Blind, Placebo-Controlled, Clinical Trial with 13 Months Follow-Up. Obes. Surg. 2019;29:1248–1258. doi: 10.1007/s11695-018-03667-6.
    1. Woodard G.A., Encarnacion B., Downey J.R., Peraza J., Chong K., Hernandez-Boussard T., Morton J.M. Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: A prospective randomized trial. J. Gastrointest. Surg. 2009;13:1198–1204. doi: 10.1007/s11605-009-0891-x.
    1. Valentini L., Pinto A., Bourdel-Marchasson I., Ostan R., Brigidi P., Turroni S., Hrelia S., Hrelia P., Bereswill S., Fischer A. Impact of personalized diet and probiotic supplementation on inflammation, nutritional parameters and intestinal microbiota–The “RISTOMED project”: Randomized controlled trial in healthy older people. Clin. Nutr. 2015;34:593–602. doi: 10.1016/j.clnu.2014.09.023.
    1. Capcarova M., Weiss J., Hrncar C., Kolesarova A., Pal G. Effect of Lactobacillus fermentum and Enterococcus faecium strains on internal milieu, antioxidant status and body weight of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2010;94:e215–e224. doi: 10.1111/j.1439-0396.2010.01010.x.
    1. Capcarova M., Hascik P., Kolesarova A., Kacaniova M., Mihok M., Pal G. The effect of selected microbial strains on internal milieu of broiler chickens after peroral administration. Vet. Sci. Res. J. 2011;91:132–137. doi: 10.1016/j.rvsc.2010.07.022.
    1. Asemi Z., Bahmani S., Shakeri H., Jamal A., Faraji A.-M. Effect of multispecies probiotic supplements on serum minerals, liver enzymes and blood pressure in patients with type 2 diabetes. Int. J. Diabetes Dev. Ctries. 2015;35:90–95. doi: 10.1007/s13410-013-0187-2.
    1. PRISMA. [(accessed on 19 March 2020)]. Available online:
    1. Haddaway N.R., Collins A.M., Coughlin D., Kirk S. The role of Google Scholar in evidence reviews and its applicability to grey literature searching. PLoS ONE. 2015;10:e0138237. doi: 10.1371/journal.pone.0138237.
    1. Higgins J.P., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., Welch V.A. Cochrane Handbook for Systematic Reviews of Interventions. 2nd ed. John Wiley & Sons; Chichester, UK: 2019.
    1. Sterne J.A., Savović J., Page M.J., Elbers R.G., Blencowe N.S., Boutron I., Cates C.J., Cheng H.-Y., Corbett M.S., Eldridge S.M. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. doi: 10.1136/bmj.l4898.
    1. Ding H., Hu G.L., Zheng X.Y., Chen Q., Threapleton D.E., Zhou Z.H. The method quality of cross-over studies involved in Cochrane Systematic Reviews. PLoS ONE. 2015;10:e0120519. doi: 10.1371/journal.pone.0120519.
    1. Sterne J.A., Hernán M.A., Reeves B.C., Savović J., Berkman N.D., Viswanathan M., Henry D., Altman D.G., Ansari M.T., Boutron I. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. doi: 10.1136/bmj.i4919.
    1. Elmadfa I., Heinzle C., Majchrzak D., Foissy H. Influence of a probiotic yoghurt on the status of vitamins B1, B2 and B6 in the healthy adult human. Ann. Nutr. Metab. 2001;45:13–18. doi: 10.1159/000046700.
    1. Fabian. Elmadfa The effect of daily consumption of probiotic and conventional yoghurt on oxidant and antioxidant parameters in plasma of young healthy women. Int. J. Vitam. Nutr. Res. 2007;77:79–88. doi: 10.1024/0300-9831.77.2.79.
    1. Fabian E., Majchrzak D., Dieminger B., Meyer E., Elmadfa I. Influence of probiotic and conventional yoghurt on the status of vitamins B1, B2 and B6 in young healthy women. Ann. Nutr. Metab. 2008;52:29–36. doi: 10.1159/000114408.
    1. Surono I.S., Martono P.D., Kameo S., Suradji E.W., Koyama H. Effect of probiotic L. plantarum IS-10506 and zinc supplementation on humoral immune response and zinc status of Indonesian pre-school children. Trace Elem. Med. Biol. 2014;28:465–469. doi: 10.1016/j.jtemb.2014.07.009.
    1. Agustina R., Bovee-Oudenhoven I.M., Lukito W., Fahmida U., Van De Rest O., Zimmermann M.B., Firmansyah A., Wulanti R., Albers R., van den Heuvel E.G., et al. Probiotics Lactobacillus reuteri DSM 17938 and Lactobacillus casei CRL 431 modestly increase growth, but not iron and zinc status, among Indonesian children aged 1–6 years. J. Nutr. 2013;143:1184–1193. doi: 10.3945/jn.112.166397.
    1. Donaldson M.S. Metabolic vitamin B12 status on a mostly raw vegan diet with follow-up using tablets, nutritional yeast, or probiotic supplements. Ann. Nutr. Metab. 2000;44:229–234. doi: 10.1159/000046689.
    1. Gohel M.K., Prajapati J.B., Mudgal S.V., Pandya H.V., Singh U.S., Trivedi S.S., Phatak A.G., Patel R.M. Effect of probiotic dietary intervention on calcium and haematological parameters in geriatrics. JCDR. 2016;10:LC05. doi: 10.7860/JCDR/2016/18877.7627.
    1. Axling U., Önning G., Combs M.A., Bogale A., Högström M., Svensson M. The Effect of Lactobacillus plantarum 299v on Iron Status and Physical Performance in Female Iron-Deficient Athletes: A Randomized Controlled Trial. Nutrients. 2020;12:1279. doi: 10.3390/nu12051279.
    1. Ballini A., Gnoni A., De Vito D., Dipalma G., Cantore S., Gargiulo Isacco C., Saini R., Santacroce L., Topi S., Scarano A., et al. Effect of probiotics on the occurrence of nutrition absorption capacities in healthy children: A randomized double-blinded placebo-controlled pilot study. Eur. Rev. Med. Pharm. Sci. 2019;23:8645–8657.
    1. Mohammad M.A., Molloy A., Scott J., Hussein L. Plasma cobalamin and folate and their metabolic markers methylmalonic acid and total homocysteine among Egyptian children before and after nutritional supplementation with the probiotic bacteria Lactobacillus acidophilus in yoghurt matrix. Int. J. Food Sci. Nutr. 2006;57:470–480. doi: 10.1080/09637480600968735.
    1. Korčok D.J., Tršić-Milanoviće N., Ivanović N., Đorđević B. Development of probiotic formulation for the treatment of iron deficiency anemia. Chem. Pharm. Bull. 2018;66:347–352. doi: 10.1248/cpb.c17-00634.
    1. Swanson K.S., Gibson G.R., Hutkins R., Reimer R.A., Reid G., Verbeke K., Scott K.P., Holscher H.D., Azad M.B., Delzenne N.M. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020;17:687–701. doi: 10.1038/s41575-020-0344-2.
    1. Wibowo N., Bardosono S., Irwinda R. Effects of Bifidobacterium animalis lactis HN019 (DR10TM), inulin, and micronutrient fortified milk on faecal DR10TM, immune markers, and maternal micronutrients among Indonesian pregnant women. Asia Pac. J. Clin. Nutr. 2016;25:S102–s110.
    1. Karbaschian Z., Mokhtari Z., Pazouki A., Kabir A., Hedayati M., Moghadam S.S., Mirmiran P., Hekmatdoost A. Probiotic Supplementation in Morbid Obese Patients Undergoing One Anastomosis Gastric Bypass-Mini Gastric Bypass (OAGB-MGB) Surgery: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Obes. Surg. 2018;28:2874–2885. doi: 10.1007/s11695-018-3280-2.
    1. Yuki N., Watanabe K., Mike A., Tagami Y., Tanaka R., Ohwaki M., Morotomi M. Survival of a probiotic, Lactobacillus casei strain Shirota, in the gastrointestinal tract: Selective isolation from faeces and identification using monoclonal antibodies. Int. J. Food Microbiol. 1999;48:51–57. doi: 10.1016/S0168-1605(99)00029-X.
    1. Magnúsdóttir S., Ravcheev D., de Crécy-Lagard V., Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 2015;6:148. doi: 10.3389/fgene.2015.00148.
    1. Cárdenas N., Laiño J.E., Delgado S., Jiménez E., Del Valle M.J., De Giori G.S., Sesma F., Mayo B., Fernández L., LeBlanc J.G. Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. Appl. Microbiol. Biotechnol. 2015;99:4343–4353. doi: 10.1007/s00253-015-6429-0.
    1. Hannibal L., Lysne V., Bjørke-Monsen A.-L., Behringer S., Grünert S.C., Spiekerkoetter U., Jacobsen D.W., Blom H.J. Biomarkers and algorithms for the diagnosis of vitamin B12 deficiency. Front. Mol. Biosci. 2016;3:27. doi: 10.3389/fmolb.2016.00027.
    1. de Benoist B. Conclusions of a WHO Technical Consultation on folate and vitamin B12 deficiencies. Food Nutr Bull. 2008;29:S238–S244. doi: 10.1177/15648265080292S129.
    1. Lin M., Young C. Folate levels in cultures of lactic acid bacteria. Int. Dairy J. 2000;10:409–413. doi: 10.1016/S0958-6946(00)00056-X.
    1. Nor N.M., Mohamad R., Foo H.L., Rahim R.A. Improvement of folate biosynthesis by lactic acid bacteria using response surface methodology. Food Technol. Biotechnol. 2010;48:243–250.
    1. Deguchi Y., Morishita T., Mutai M. Comparative studies on synthesis of water-soluble vitamins among human species of bifidobacteria. Agric. Biol. Chem. 1985;49:13–19.
    1. Strozzi G.P., Mogna L. Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J. Clin. Gastroenterol. 2008;42:S179–S184. doi: 10.1097/MCG.0b013e31818087d8.
    1. D’Aimmo M.R., Mattarelli P., Biavati B., Carlsson N.-G., Andlid T. The potential of bifidobacteria as a source of natural folate. J. Appl. Microbiol. 2012;112:975–984. doi: 10.1111/j.1365-2672.2012.05261.x.
    1. Eloe-Fadrosh E.A., Brady A., Crabtree J., Drabek E.F., Ma B., Mahurkar A., Ravel J., Haverkamp M., Fiorino A.-M., Botelho C. Functional dynamics of the gut microbiome in elderly people during probiotic consumption. MBio. 2015;6:e00231-15. doi: 10.1128/mBio.00231-15.
    1. Sánchez B., Delgado S., Blanco-Míguez A., Lourenço A., Gueimonde M., Margolles A. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 2017;61:1600240. doi: 10.1002/mnfr.201600240.
    1. Lahtinen S.J., Tammela L., Korpela J., Parhiala R., Ahokoski H., Mykkänen H., Salminen S.J. Probiotics modulate the Bifidobacterium microbiota of elderly nursing home residents. Age. 2009;31:59–66. doi: 10.1007/s11357-008-9081-0.
    1. Madhu A.N., Giribhattanavar P., Narayan M.S., Prapulla S.G. Probiotic lactic acid bacterium from kanjika as a potential source of vitamin B 12: Evidence from LC-MS, immunological and microbiological techniques. Biotechnol. Lett. 2010;32:503–506. doi: 10.1007/s10529-009-0176-1.
    1. Valdes A.M., Walter J., Segal E., Spector T.D. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179. doi: 10.1136/bmj.k2179.
    1. Asemi Z., Esmaillzadeh A. Effect of daily consumption of probiotic yoghurt on serum levels of calcium, iron and liver enzymes in pregnant women. Int. J. Prev. Med. 2013;4:949.
    1. Trinidad T.P., Wolever T., Thompson L.U. Effect of acetate and propionate on calcium absorption from the rectum and distal colon of humans. Am. J. Clin. Nutr. 1996;63:574–578. doi: 10.1093/ajcn/63.4.574.
    1. Yang L.-C., Wu J.-B., Lu T.-J., Lin W.-C. The prebiotic effect of Anoectochilus formosanus and its consequences on bone health. Br. J. Nutr. 2013;109:1779–1788. doi: 10.1017/S0007114512003777.
    1. Cheung A.L.T.F., Wilcox G., Walker K.Z., Shah N.P., Strauss B., Ashton J.F., Stojanovska L. Fermentation of calcium-fortified soya milk does not appear to enhance acute calcium absorption in osteopenic post-menopausal women. Br. J. Nutr. 2011;105:282–286. doi: 10.1017/S0007114510003442.
    1. Sanggaard K., Holst J., Rehfeld J., Sandström B., Raben A., Tholstrup T. Different effects of whole milk and a fermented milk with the same fat and lactose content on gastric emptying and postprandial lipaemia, but not on glycaemic response and appetite. Br. J. Nutr. 2004;92:447–459. doi: 10.1079/BJN20041219.
    1. Mahé S., Marteau P., Huneau J.-F., Thuillier F., Tomé D. Intestinal nitrogen and electrolyte movements following fermented milk ingestion in man. Br. J. Nutr. 1994;71:169–180. doi: 10.1079/BJN19940124.
    1. Lee Y.S., Noguchi T., Naito H. Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet. Br. J. Nutr. 1980;43:457–467. doi: 10.1079/BJN19800113.
    1. Kitts D.D., Yuan Y.V., Nagasawa T., Moriyama Y. Effect of casein, casein phosphopeptides and calcium intake on ileal 45 Ca disappearance and temporal systolic blood pressure in spontaneously hypertensive rats. Br. J. Nutr. 1992;68:765–781. doi: 10.1079/BJN19920132.
    1. Hansen M., Sandström B., Jensen M., Sørensen S.S. Casein phosphopeptides improve zinc and calcium absorption from rice-based but not from whole-grain infant cereal. J. Pediatr. Gastroenterol. Nutr. 1997;24:56–62. doi: 10.1097/00005176-199701000-00014.
    1. Hansen M., Sandström B., Jensen M., Sørensen S. Effect of casein phosphopeptides on zinc and calcium absorption from bread meals. J. Trace Elem. Med. Biol. 1997;11:143–149. doi: 10.1016/S0946-672X(97)80041-7.
    1. Heaney R.P., Saito Y., Orimo H. Effect of caseinphosphopeptide on absorbability of co-ingested calcium in normal postmenopausal women. J. Bone Miner. Metab. 1994;12:77–81. doi: 10.1007/BF02383413.
    1. Bomba A., Nemcová R.r., Mudroňová D., Guba P. The possibilities of potentiating the efficacy of probiotics. Trends Food Sci. Technol. 2002;13:121–126. doi: 10.1016/S0924-2244(02)00129-2.
    1. Nemcova R., Bomba A., Gancarcikova S., Herich R., Guba P. Study of the effect of Lactobacillus paracasei and fructooligosaccharides on the faecal microflora in weanling piglets. Berl. Munch. Tierarztl. Wochenschr. 1999;112:225–228.
    1. Nakashima A. Stimulatory effect of phytin on acid production by Lactobacillus casei. J. Nutr. Sci. Vitaminol. 1997;43:419–424. doi: 10.3177/jnsv.43.419.
    1. Bomba A., Nemcová R., Gancarčíková S., Herich R., Kaštel R. Potentiation of the Effectiveness of Lactobacillus Casei in the Prevention of E. Coli Induced Diarrhea in Conventional and Gnotobiotic Pigs. In: Paul P.S., Francis D.H., editors. Mechanisms in the Pathogenesis of Enteric Diseases 2. Springer; Boston, MA, USA: 1999. pp. 185–190.
    1. Holm A., Poulsen H. Zinc oxide in treating E. coli diarrhea in pigs after weaning. Compend. Contin. Educ. Pract. Vet. 1996;18:s26–s29.
    1. Tesán F., Hernández F., Torti H., Massot F., Huarte M., de Celis E.R., Barreiro M., Weill R., Cremaschi G., Boccio J. Glycine-stabilized zinc gluconate has similar bioavailability than zinc sulfate in a zinc fortified probiotic food. Open Nutraceuticals J. 2011;4:136–143. doi: 10.2174/1876396001104010136.
    1. Shah M., Zaneb H., Masood S., Khan R.U., Ashraf S., Sikandar A., Rehman H.F.U., Rehman H.U. Effect of dietary supplementation of zinc and multi-microbe probiotic on growth traits and alteration of intestinal architecture in broiler. Probiotics Antimicrob. Proteins. 2019;11:931–937. doi: 10.1007/s12602-018-9424-9.
    1. Gill H., Prasad J. Bioactive Components of Milk. Springer; New York, NY, USA: 2008. Probiotics, immunomodulation, and health benefits; pp. 423–454.
    1. Vonderheid S.C., Tussing-Humphreys L., Park C., Pauls H., OjiNjideka Hemphill N., LaBomascus B., McLeod A., Koenig M.D. A Systematic Review and Meta-Analysis on the Effects of Probiotic Species on Iron Absorption and Iron Status. Nutrients. 2019;11:2938. doi: 10.3390/nu11122938.
    1. Johansson M., Molin G., Jeppsson B., Nobaek S., Ahrne S., Bengmark S. Administration of different Lactobacillus strains in fermented oatmeal soup: In vivo colonization of human intestinal mucosa and effect on the indigenous flora. Appl. Env. Microbiol. 1993;59:15–20. doi: 10.1128/aem.59.1.15-20.1993.
    1. Derman D., Bothwell T., Torrance J., Bezwoda W., MacPhail A., Kew M., Sayers M., Disler P., Charlton R. Iron absorption from maize (Zea mays) and sorghum (Sorghum vulgare) beer. Br. J. Nutr. 1980;43:271–279. doi: 10.1079/BJN19800090.
    1. Liljeberg H., Björck I. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur. J. Clin. Nutr. 1998;52:368–371. doi: 10.1038/sj.ejcn.1600572.
    1. Salovaara S., Larsson Alminger M., Eklund-Jonsson C., Andlid T., Sandberg A.-S. Prolonged transit time through the stomach and small intestine improves iron dialyzability and uptake in vitro. J. Agric. Food Chem. 2003;51:5131–5136. doi: 10.1021/jf0208233.
    1. Salovaara S., Sandberg A.-S., Andlid T. Organic acids influence iron uptake in the human epithelial cell line Caco-2. J. Agric. Food Chem. 2002;50:6233–6238. doi: 10.1021/jf0203040.
    1. Sandberg A.-S., Önning G., Engström N., Scheers N. Iron Supplements Containing Lactobacillus plantarum 299v Increase Ferric Iron and Up-regulate the Ferric Reductase DCYTB in Human Caco-2/HT29 MTX Co-Cultures. Nutrients. 2018;10:1949. doi: 10.3390/nu10121949.
    1. Douglas L.C., Sanders M.E. Probiotics and prebiotics in dietetics practice. J. Am. Diet. Assoc. 2008;108:510–521. doi: 10.1016/j.jada.2007.12.009.
    1. Chapman C., Gibson G.R., Rowland I. Health benefits of probiotics: Are mixtures more effective than single strains? Eur. J. Nutr. 2011;50:1–17. doi: 10.1007/s00394-010-0166-z.
    1. Spinler J.K., Taweechotipatr M., Rognerud C.L., Ou C.N., Tumwasorn S., Versalovic J. Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe. 2008;14:166–171. doi: 10.1016/j.anaerobe.2008.02.001.
    1. O’Shea E.F., Cotter P.D., Stanton C., Ross R.P., Hill C. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. Int. J. Food Microbiol. 2012;152:189–205. doi: 10.1016/j.ijfoodmicro.2011.05.025.
    1. Collado M., Meriluoto J., Salminen S. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett. Appl. Microbiol. 2007;45:454–460. doi: 10.1111/j.1472-765X.2007.02212.x.
    1. Lee B.J., Bak Y.-T. Irritable bowel syndrome, gut microbiota and probiotics. J. Neurogastroenterol. Motil. 2011;17:252. doi: 10.5056/jnm.2011.17.3.252.
    1. Arthur J.C., Gharaibeh R.Z., Uronis J.M., Perez-Chanona E., Sha W., Tomkovich S., Mühlbauer M., Fodor A.A., Jobin C. VSL# 3 probiotic modifies mucosal microbial composition but does not reduce colitis-associated colorectal cancer. Sci. Rep. 2013;3:2868.
    1. Sugahara H., Odamaki T., Fukuda S., Kato T., Xiao J.-z., Abe F., Kikuchi J., Ohno H. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Sci. Rep. 2015;5:13548. doi: 10.1038/srep13548.
    1. Turroni F., Milani C., Duranti S., Mancabelli L., Mangifesta M., Viappiani A., Lugli G.A., Ferrario C., Gioiosa L., Ferrarini A. Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach. ISME J. 2016;10:1656–1668. doi: 10.1038/ismej.2015.236.
    1. Preidis G.A., Saulnier D.M., Blutt S.E., Mistretta T.A., Riehle K.P., Major A.M., Venable S.F., Finegold M.J., Petrosino J.F., Conner M.E. Probiotics stimulate enterocyte migration and microbial diversity in the neonatal mouse intestine. FASEB J. 2012;26:1960–1969. doi: 10.1096/fj.10-177980.
    1. Nobaek S., Johansson M.-L., Molin G., Ahrné S., Jeppsson B. Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. Am. J. Gastroenterol. Suppl. 2000;95:1231–1238. doi: 10.1111/j.1572-0241.2000.02015.x.
    1. Cha B.K., Jung S.M., Choi C.H., Song I.-D., Lee H.W., Kim H.J., Hyuk J., Chang S.K., Kim K., Chung W.-S. The effect of a multispecies probiotic mixture on the symptoms and fecal microbiota in diarrhea-dominant irritable bowel syndrome: A randomized, double-blind, placebo-controlled trial. J. Clin. Gastroenterol. 2012;46:220–227. doi: 10.1097/MCG.0b013e31823712b1.
    1. McNulty N.P., Yatsunenko T., Hsiao A., Faith J.J., Muegge B.D., Goodman A.L., Henrissat B., Oozeer R., Cools-Portier S., Gobert G. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 2011;3:ra106. doi: 10.1126/scitranslmed.3002701.
    1. Lahtinen S.J., Forssten S., Aakko J., Granlund L., Rautonen N., Salminen S., Viitanen M., Ouwehand A.C. Probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM® modifies subpopulations of fecal lactobacilli and Clostridium difficile in the elderly. Age. 2012;34:133–143. doi: 10.1007/s11357-011-9208-6.
    1. Ouwehand A.C., Kirjavainen P.V., Shortt C., Salminen S. Probiotics: Mechanisms and established effects. Int. Dairy J. 1999;9:43–52. doi: 10.1016/S0958-6946(99)00043-6.
    1. Morelli L., Cesena C., Lucchini F., Callegari M.L., Alander M., Mattila-Sandholm T., von Wright A., Salminen S., Lehto E., Vilpponen-Salmela T. Role of cell aggregation protein in adhesion in vitro and in vivo; Proceedings of the 2nd Workshop Demonstation of the Nutritional Functionality of Probiotic Foods FAIR CT96-1028; Espoo, Finland. 3 October 1997; pp. 63–64.
    1. Surono I.S. In vitro probiotic properties of indigenous dadih lactic acid bacteria. Asian Australas. J. Anim. Sci. 2003;16:726–731. doi: 10.5713/ajas.2003.726.
    1. Collado M.C., Surono I.S., Meriluoto J., Salminen S. Potential probiotic characteristics of Lactobacillus and Enterococcus strains isolated from traditional dadih fermented milk against pathogen intestinal colonization. J. Food Prot. 2007;70:700–705. doi: 10.4315/0362-028X-70.3.700.
    1. Khedkar C., Dave J., Sannabhadti S. Antibacterial activity of human strains of Lactobacillus acidophilus grown in milk against selected pathogenic and spoilage type bacteria. Cult. Dairy Prod. J. 1990;25:29–31.
    1. Ashar M., Prajapati J. Bile tolerance, bile deconjugation and cholesterol reducing properties of dietary lactobacilli. Indian J. Microbiol. 1998;38:145–148.
    1. Kodaikkal V., Prajapati J., Ljungh A. Evaluation of adhesion of Lactobacillus strains to HT-29 cells by a flow cytometric assay. Int. J. Appl. Anim. Sci. 2012;1:1–7.
    1. Prajapati J.B., Khedkar C.D., Chitra J., Suja S., Mishra V., Sreeja V., Patel R.K., Ahir V.B., Bhatt V.D., Sajnani M.R., et al. Whole-Genome Shotgun Sequencing of an Indian-Origin Lactobacillus helveticus Strain, MTCC 5463, with Probiotic Potential. J. Bacteriol. Res. 2011;193:4282–4283. doi: 10.1128/JB.05449-11.
    1. Zhang S., Chen D.-C. Facing a new challenge: The adverse effects of antibiotics on gut microbiota and host immunity. Chin. Med. J. 2019;132:1135. doi: 10.1097/CM9.0000000000000245.
    1. Jernberg C., Löfmark S., Edlund C., Jansson J.K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156:3216–3223. doi: 10.1099/mic.0.040618-0.

Source: PubMed

3
Sottoscrivi