COVID-19: Immunology and treatment options

Susanna Felsenstein, Jenny A Herbert, Paul S McNamara, Christian M Hedrich, Susanna Felsenstein, Jenny A Herbert, Paul S McNamara, Christian M Hedrich

Abstract

The novel coronavirus SARS-CoV2 causes COVID-19, a pandemic threatening millions. As protective immunity does not exist in humans and the virus is capable of escaping innate immune responses, it can proliferate, unhindered, in primarily infected tissues. Subsequent cell death results in the release of virus particles and intracellular components to the extracellular space, which result in immune cell recruitment, the generation of immune complexes and associated damage. Infection of monocytes/macrophages and/or recruitment of uninfected immune cells can result in massive inflammatory responses later in the disease. Uncontrolled production of pro-inflammatory mediators contributes to ARDS and cytokine storm syndrome. Antiviral agents and immune modulating treatments are currently being trialled. Understanding immune evasion strategies of SARS-CoV2 and the resulting delayed massive immune response will result in the identification of biomarkers that predict outcomes as well as phenotype and disease stage specific treatments that will likely include both antiviral and immune modulating agents.

Copyright © 2020 Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Structure of SARS-CoV2. The spike protein (S) facilitates binding to the trans-membrane ACE2 host receptor; the envelope (E) protein together with the membrane (M) protein form the viral envelope and determine its shape; the hemagglutinin esterase (HE) protein may resemble another cell entry mechanism of novel CoVs; the nucleocapsid (N) protein in bound to the RNA genome of the virus to form the nucleocapsid.
Fig. 2
Fig. 2
Immune evasion strategies of SARS-CoV2. A) SARS-CoV2 infects airway epithelial cells through interactions with the trans-membrane enzyme ACE2 (a). While RNA viruses usually activate TLR3 and/or 7 in endosomes (b) and cytosolic RNA sensors RIG-I and MDA-5 (c), SARS-COV2 effectively suppresses the activation of TNF receptor-associated factors (TRAF) 3 and 6, thereby limiting activation of the transcription factors NFκB and IRF3 and 7, thereby suppressing early pro-inflammatory responses through type I interferons (IFN) and pro-inflammatory effector cytokines IL-1, IL-6 and TNF-α (red symbols). Furthermore, novel CoVs inhibit the activation of STAT transcription factors (d) in response to type I IFN receptor activation, which further limits antiviral response mechanisms. Altogether, this prohibits virus containment through activation of anti-viral programs and the recruitment of immune cells. B) Tissue monocytes/macrophages express ACE2 to a significantly lower extent, making infection through this route less likely (a). However, immune complexes consisting of ineffective antibodies against e.g. seasonal CoVs and virus particles may be taken up by macrophages through Fcγ receptors resulting in their infection (b). In a process referred to as antibody directed enhancement (ADE), virions inhibit type I IFN signaling in infected macrophages while allowing pro-inflammatory IL-1, IL-6 and TNF-α expression, which may contribute to hyperinflammation and cytokine storm syndrome (c,d). Inhibited type 1 IFN signaling suppresses anti-viral programs, while increased IL-1, IL-6 and TNF-α expression auto-amplifies itself through positive feedback loops (f).
Fig. 3
Fig. 3
Inflammatory response through monocytes macrophages. Uninfected monocytes/macrophages from the blood stream invade the lungs where they detect virus particles and/or cytoplasmic and nuclear components. Within immune complexes, these particles are taken up into the cell (a) where they are presented to TLRs, activating NFκB and/or IRF dependent pro-inflammatory pathways (b,c). As a result, uninfected monocytes/macrophages produce significant amounts of pro-inflammatory cytokines (d,e) which recruit additional innate and adaptive immune cells and cause additional tissue damage.
Fig. 4
Fig. 4
Inflammatory mechanisms in immune complex vasculitis.
Fig. 5
Fig. 5
Potential therapeutic targets in COVID-19. While no approved and evidence-based treatments are available for COVID-19, a number of treatments promise potential. Virus particles may be caught and inactivated using antibodies from convalescent patients. Recombinant soluble ACE2 protein may bind SARS-CoV2 and/or mediate anti-inflammatory effects to prevent pulmonary damage and hyper-inflammation. (Hydroxy-)chloroquine, potentially in combination with azithromycin), can change the pH of endosomes and reduce virus entry and replication. Furthermore, both medications have immune-modulating effects that may control pro-inflammatory cytokine expression. Anti-viral treatment with protease inhibitors (lopinavir, ritonavir, etc.) and/or nucleoside analogues (remdesivir, etc.) can limit virus replication. As SARS-CoV2 suppresses antiviral cytokine production, virus clearance may also be supported by the substitution of type 1 interferons, which activate their cytokine receptor (IFNAR) and induce anti-viral cellular programs. Hyperinflammation and resulting tissue damage may be prevented through immune modulation. Blocking IL-1 signaling (e.g. through recombinant IL-1 receptor antagonist anakinra) or IL-6 signaling (e.g. through IL-6 receptor antibody tocilizumab) may limit further immune activation, tissue damage and cytokine storms. Additional, less specific effects may be mediated through corticosteroids, immunoglobulins, hydroxychloroquine and/or azithromycin.

References

    1. Song Z., Xu Y., Bao L., Zhang L., Yu P., Qu Y. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019;11(1)
    1. Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H.R., Becker S. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348(20):1967–1976.
    1. Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012;367(19):1814–1820.
    1. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269.
    1. Hamre D., Procknow J.J. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 1966;121(1):190–193.
    1. McIntosh K., Dees J.H., Becker W.B., Kapikian A.Z., Chanock R.M. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. U. S. A. 1967;57(4):933–940.
    1. van der Hoek L., Pyrc K., Jebbink M.F., Vermeulen-Oost W., Berkhout R.J., Wolthers K.C. Identification of a new human coronavirus. Nat. Med. 2004;10(4):368–373.
    1. Woo P.C., Lau S.K., Huang Y., Tsoi H.W., Chan K.H., Yuen K.Y. Phylogenetic and recombination analysis of coronavirus HKU1, a novel coronavirus from patients with pneumonia. Arch. Virol. 2005;150(11):2299–2311.
    1. Gaunt E.R., Hardie A., Claas E.C., Simmonds P., Templeton K.E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol. 2010;48(8):2940–2947.
    1. Annan A., Ebach F., Corman V.M., Krumkamp R., Adu-Sarkodie Y., Eis-Hubinger A.M. Similar virus spectra and seasonality in paediatric patients with acute respiratory disease. Ghana and Germany. Clin Microbiol Infect. 2016;22(4):340–346.
    1. Berkley J.A., Munywoki P., Ngama M., Kazungu S., Abwao J., Bett A. Viral etiology of severe pneumonia among Kenyan infants and children. JAMA. 2010;303(20):2051–2057.
    1. Larson H.E., Reed S.E., Tyrrell D.A. Isolation of rhinoviruses and coronaviruses from 38 colds in adults. J. Med. Virol. 1980;5(3):221–229.
    1. Dominguez S.R., Robinson C.C., Holmes K.V. Detection of four human coronaviruses in respiratory infections in children: a one-year study in Colorado. J. Med. Virol. 2009;81(9):1597–1604.
    1. Dijkman R., Jebbink M.F., El Idrissi N.B., Pyrc K., Muller M.A., Kuijpers T.W. Human coronavirus NL63 and 229E seroconversion in children. J. Clin. Microbiol. 2008;46(7):2368–2373.
    1. Shao X., Guo X., Esper F., Weibel C., Kahn J.S. Seroepidemiology of group I human coronaviruses in children. J. Clin. Virol. 2007;40(3):207–213.
    1. Dijkman R., Jebbink M.F., Gaunt E., Rossen J.W., Templeton K.E., Kuijpers T.W. The dominance of human coronavirus OC43 and NL63 infections in infants. J. Clin. Virol. 2012;53(2):135–139.
    1. Cabeca T.K., Passos A.M., Granato C., Bellei N. Human coronavirus ocurrence in different populations of Sao Paulo: A comprehensive nine-year study using a pancoronavirus RT-PCR assay. Braz. J. Microbiol. 2013;44(1):335–339.
    1. Friedman N., Alter H., Hindiyeh M., Mendelson E., Shemer Avni Y., Mandelboim M. Human coronavirus infections in Israel: epidemiology, clinical symptoms and summer seasonality of HCoV-HKU1. Viruses. 2018;10(10)
    1. Cabeca T.K., Granato C., Bellei N. Epidemiological and clinical features of human coronavirus infections among different subsets of patients. Influenza Other Respir. Viruses. 2013;7(6):1040–1047.
    1. Cabeca T.K., Carraro E., Watanabe A., Granato C., Bellei N. Infections with human coronaviruses NL63 and OC43 among hospitalised and outpatient individuals in Sao Paulo. Brazil. Mem Inst Oswaldo Cruz. 2012;107(5):693–694.
    1. Zheng X.Y., Xu Y.J., Guan W.J., Lin L.F. Regional, age and respiratory-secretion-specific prevalence of respiratory viruses associated with asthma exacerbation: a literature review. Arch. Virol. 2018;163(4):845–853.
    1. Boucher A., Desforges M., Duquette P., Talbot P.J. Long-term human coronavirus-myelin cross-reactive T-cell clones derived from multiple sclerosis patients. Clin. Immunol. 2007;123(3):258–267.
    1. Morfopoulou S., Brown J.R., Davies E.G., Anderson G., Virasami A., Qasim W. Human Coronavirus OC43 Associated with Fatal Encephalitis. N. Engl. J. Med. 2016;375(5):497–498.
    1. Shi T., McLean K., Campbell H., Nair H. Aetiological role of common respiratory viruses in acute lower respiratory infections in children under five years: A systematic review and meta-analysis. J. Glob. Health. 2015;5(1)
    1. Milano F., Campbell A.P., Guthrie K.A., Kuypers J., Englund J.A., Corey L. Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients. Blood. 2010;115(10):2088–2094.
    1. Singleton R.J., Bulkow L.R., Miernyk K., DeByle C., Pruitt L., Hummel K.B. Viral respiratory infections in hospitalized and community control children in Alaska. J. Med. Virol. 2010;82(7):1282–1290.
    1. Anderson R.M., Fraser C., Ghani A.C., Donnelly C.A., Riley S., Ferguson N.M. Epidemiology, transmission dynamics and control of SARS: the 2002-2003 epidemic. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2004;359(1447):1091–1105.
    1. Donnelly C.A., Fisher M.C., Fraser C., Ghani A.C., Riley S., Ferguson N.M. Epidemiological and genetic analysis of severe acute respiratory syndrome. Lancet Infect. Dis. 2004;4(11):672–683.
    1. Ip M., Chan P.K., Lee N., Wu A., Ng T.K., Chan L. Seroprevalence of antibody to severe acute respiratory syndrome (SARS)-associated coronavirus among health care workers in SARS and non-SARS medical wards. Clin. Infect. Dis. 2004;38(12):e116–e118.
    1. Leung G.M., Lim W.W., Ho L.M., Lam T.H., Ghani A.C., Donnelly C.A. Seroprevalence of IgG antibodies to SARS-coronavirus in asymptomatic or subclinical population groups. Epidemiol. Infect. 2006;134(2):211–221.
    1. Lee P.P., Wong W.H., Leung G.M., Chiu S.S., Chan K.H., Peiris J.S. Risk-stratified seroprevalence of SARS coronavirus in children residing in a district with point-source outbreak compared to a low-risk area. Hong Kong Med J. 2008;14(Suppl. 4):17–20.
    1. Yam L.Y., Chen R.C., Zhong N.S. SARS: ventilatory and intensive care. Respirology. 2003;8(Suppl):S31–S35.
    1. Ng L.F., Hibberd M.L., Ooi E.E., Tang K.F., Neo S.Y., Tan J. A human in vitro model system for investigating genome-wide host responses to SARS coronavirus infection. BMC Infect. Dis. 2004;4:34.
    1. Oudit G.Y., Kassiri Z., Jiang C., Liu P.P., Poutanen S.M., Penninger J.M. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur. J. Clin. Investig. 2009;39(7):618–625.
    1. Leth-Larsen R., Zhong F., Chow V.T., Holmskov U., Lu J. The SARS coronavirus spike glycoprotein is selectively recognized by lung surfactant protein D and activates macrophages. Immunobiology. 2007;212(3):201–211.
    1. Law H.K., Cheung C.Y., Ng H.Y., Sia S.F., Chan Y.O., Luk W. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. 2005;106(7):2366–2374.
    1. Matsuyama R., Nishiura H., Kutsuna S., Hayakawa K., Ohmagari N. Clinical determinants of the severity of Middle East respiratory syndrome (MERS): a systematic review and meta-analysis. BMC Public Health. 2016;16(1):1203.
    1. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017;39(5):529–539.
    1. Clay C., Donart N., Fomukong N., Knight J.B., Lei W., Price L. Primary severe acute respiratory syndrome coronavirus infection limits replication but not lung inflammation upon homologous rechallenge. J. Virol. 2012;86(8):4234–4244.
    1. Peiris J.S., Chu C.M., Cheng V.C., Chan K.S., Hung I.F., Poon L.L. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361(9371):1767–1772.
    1. Wang W.K., Chen S.Y., Liu I.J., Kao C.L., Chen H.L., Chiang B.L. Temporal relationship of viral load, ribavirin, interleukin (IL)-6, IL-8, and clinical progression in patients with severe acute respiratory syndrome. Clin. Infect. Dis. 2004;39(7):1071–1075.
    1. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 2020 doi: 10.1016/S2213-2600(20)30079-5. pii: S2213-2600(20)30079-5. [Epub ahead of print]
    1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020.
    1. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2002032. [Epub ahead of print]
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513.
    1. Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020 doi: 10.1001/jama.2020.2648. [Epub ahead of print]
    1. Tian S., Xiong Y., Liu H., Niu L., Guo J., Liao M. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod. Pathol. 2020 doi: 10.1038/s41379-020-0536-x. [Epub ahead of print]
    1. Barton L.M., Duval E.J., Stroberg E., Ghosh S., Mukhopadhyay S. Oklahoma; USA. Am J Clin Pathol: 2020. COVID-19 Autopsies.
    1. Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F. China; JAMA Cardiol: 2020. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan.
    1. Guo T., Fan Y., Chen M., Wu X., Zhang L., He T. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19) JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.1017. [Epub ahead of print]
    1. Ruan Q., Yang K., Wang W., Jiang L., Song J. China; Intensive Care Med: 2020. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan.
    1. Zhang J, Liu P, Wang M, Wang J, Chen J, Yuan W, et al. The clinical data from 19 critically ill patients with coronavirus disease 2019: a single-centered, retrospective, observational study. Z Gesundh Wiss. 2020:1-4.
    1. Zhang W., Zhao Y., Zhang F., Wang Q., Li T., Liu Z. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol. 2020;214:108393.
    1. Drexler J.F., Gloza-Rausch F., Glende J., Corman V.M., Muth D., Goettsche M. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 2010;84(21):11336–11349.
    1. Drexler J.F., Corman V.M., Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir. Res. 2014;101:45–56.
    1. Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 2015;1282:1–23.
    1. Anthony S.J., Johnson C.K., Greig D.J., Kramer S., Che X., Wells H. Global patterns in coronavirus diversity. Virus Evol. 2017;3(1):vex012.
    1. Kreuder Johnson C., Hitchens P.L., Smiley Evans T., Goldstein T., Thomas K., Clements A. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 2015;5:14830.
    1. Corman V.M., Baldwin H.J., Tateno A.F., Zerbinati R.M., Annan A., Owusu M. Evidence for an Ancestral Association of Human Coronavirus 229E with Bats. J. Virol. 2015;89(23):11858–11870.
    1. Sabir J.S., Lam T.T., Ahmed M.M., Li L., Shen Y., Abo-Aba S.E. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science. 2016;351(6268):81–84.
    1. Ge X.Y., Li J.L., Yang X.L., Chmura A.A., Zhu G., Epstein J.H. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503(7477):535–538.
    1. Su S., Wong G., Shi W., Liu J., Lai A.C.K., Zhou J. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016;24(6):490–502.
    1. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17(3):181–192.
    1. Hulswit R.J., de Haan C.A., Bosch B.J. Coronavirus Spike Protein and Tropism Changes. Adv. Virus Res. 2016;96:29–57.
    1. Tortorici M.A., Veesler D. Structural insights into coronavirus entry. Adv. Virus Res. 2019;105:93–116.
    1. Tortorici M.A., Walls A.C., Lang Y., Wang C., Li Z., Koerhuis D. Structural basis for human coronavirus attachment to sialic acid receptors. Nat. Struct. Mol. Biol. 2019;26(6):481–489.
    1. Walls A.C., Xiong X., Park Y.J., Tortorici M.A., Snijder J., Quispe J. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell. 2019;176(5):1026–1039. e15.
    1. Ou X., Liu Y., Lei X., Li P., Mi D., Ren L. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020;11(1):1620.
    1. Bosch B.J., Smits S.L., Haagmans B.L. Membrane ectopeptidases targeted by human coronaviruses. Curr Opin Virol. 2014;6:55–60.
    1. Lu G., Wang Q., Gao G.F. Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 2015;23(8):468–478.
    1. Kleine-Weber H., Pohlmann S., Hoffmann M. Spike proteins of novel MERS-coronavirus isolates from North- and West-African dromedary camels mediate robust viral entry into human target cells. Virology. 2019;535:261–265.
    1. Klausegger A., Strobl B., Regl G., Kaser A., Luytjes W., Vlasak R. Identification of a coronavirus hemagglutinin-esterase with a substrate specificity different from those of influenza C virus and bovine coronavirus. J. Virol. 1999;73(5):3737–3743.
    1. Chan J.F., Yuan S., Kok K.H., To KK, Chu H., Yang J. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–523.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China. Lancet. 2020;395(10223):497–506.
    1. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574.
    1. Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol. 2020;38(1):1–9.
    1. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
    1. Hamming I., Timens W., Bulthuis M.L., Lely A.T., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203(2):631–637.
    1. Sims A.C., Baric R.S., Yount B., Burkett S.E., Collins P.L., Pickles R.J. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. J. Virol. 2005;79(24):15511–15524.
    1. Sungnak W.H., Bécavin C., Berg M. 2020. HCA Lung Biological Network. SARS-CoV-2 Entry Genes Are Most Highly Expressed in Nasal Goblet and Ciliated Cells within Human Airways. arXiv:200306122.
    1. Xu H., Zhong L., Deng J., Peng J., Dan H., Zeng X. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8.
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020;382(8):727–733.
    1. Perlman S., Dandekar A.A. Immunopathogenesis of coronavirus infections: implications for SARS. Nat. Rev. Immunol. 2005;5(12):917–927.
    1. Ben Addi A., Lefort A., Hua X., Libert F., Communi D., Ledent C. Modulation of murine dendritic cell function by adenine nucleotides and adenosine: involvement of the A(2B) receptor. Eur. J. Immunol. 2008;38(6):1610–1620.
    1. Lazear H.M., Schoggins J.W., Diamond M.S. Shared and Distinct Functions of Type I and Type III Interferons. Immunity. 2019;50(4):907–923.
    1. de Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14(8):523–534.
    1. Alunno A., Padjen I., Fanouriakis A., Boumpas D.T. Pathogenic and therapeutic relevance of JAK/STAT signaling in systemic lupus erythematosus: integration of distinct inflammatory pathways and the prospect of their inhibition with an oral agent. Cells. 2019;8(8)
    1. Kindler E., Thiel V., Weber F. Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response. Adv. Virus Res. 2016;96:219–243.
    1. Lu X., Pan J., Tao J., Guo D. SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes. 2011;42(1):37–45.
    1. Yi Y., Lagniton P.N.P., Ye S., Li E., Xu R.H. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int. J. Biol. Sci. 2020;16(10):1753–1766.
    1. Cron R.Q., Chatham W.W. The Rheumatologist’s Role in Covid-19. J. Rheumatol. 2020 doi: 10.3899/jrheum.200334. pii: jrheum.200334 [Epub ahead of print]
    1. Du Y., Tu L., Zhu P., Mu M., Wang R., Yang P. Clinical Features of 85 Fatal Cases of COVID-19 from Wuhan: A Retrospective Observational Study. Am. J. Respir. Crit. Care Med. 2020 doi: 10.1164/rccm.202003-0543OC. [Epub ahead of print]
    1. Zumla A., Hui D.S., Perlman S. Middle East respiratory syndrome. Lancet. 2015;386(9997):995–1007.
    1. Mahallawi W.H., Khabour OF, Zhang Q., Makhdoum H.M., Suliman B.A. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 2018;104:8–13.
    1. Nicholls J.M., Poon L.L., Lee K.C., Ng W.F., Lai S.T., Leung C.Y. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003;361(9371):1773–1778.
    1. Wong C.K., Lam C.W., Wu A.K., Ip W.K., Lee N.L., Chan I.H. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 2004;136(1):95–103.
    1. Atkin-Smith G.K., Duan M., Chen W., Poon I.K.H. The induction and consequences of Influenza A virus-induced cell death. Cell Death Dis. 2018;9(10):1002.
    1. Fu Y., Cheng Y., Wu Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol. Sin. 2020 doi: 10.1007/s12250-020-00207-4. [Epub ahead of print]
    1. Takada A., Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev. Med. Virol. 2003;13(6):387–398.
    1. Jin Y., Yang H., Ji W., Wu W., Chen S., Zhang W. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses. 2020;12(4)
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420–422.
    1. Yao X.H., Li T.Y., He Z.C., Ping Y.F., Liu H.W., Yu S.C. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49(0) E009.
    1. Schnabel A., Hedrich C.M. Childhood Vasculitis. Front. Pediatr. 2018;6:421.
    1. Guo X.J., Thomas P.G. New fronts emerge in the influenza cytokine storm. Semin. Immunopathol. 2017;39(5):541–550.
    1. Shimabukuro-Vornhagen A., Godel P., Subklewe M., Stemmler H.J., Schlosser H.A., Schlaak M. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56.
    1. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y. Dysregulation of immune response in patients with COVID-19 in Wuhan. China. Clin Infect Dis. 2020 doi: 10.1093/cid/ciaa248. pii: ciaa248 [Epub ahead of print]
    1. Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 2020 doi: 10.1172/JCI137244. pii: 137244 [Epub ahead of print]
    1. Croker B.A., O’Donnell J.A., Gerlic M. Pyroptotic death storms and cytopenia. Curr. Opin. Immunol. 2014;26:128–137.
    1. Usmani G.N., Woda B.A., Newburger P.E. Advances in understanding the pathogenesis of HLH. Br. J. Haematol. 2013;161(5):609–622.
    1. Gao X., Zhou H., Wu C., Xiao Y., Ren L., Paranhos-Baccala G. Antibody against nucleocapsid protein predicts susceptibility to human coronavirus infection. J. Inf. Secur. 2015;71(5):599–602.
    1. Che X.Y., Qiu L.W., Liao Z.Y., Wang Y.D., Wen K., Pan Y.X. Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43. J. Infect. Dis. 2005;191(12):2033–2037.
    1. Roberts A., Lamirande E.W., Vogel L., Jackson J.P., Paddock C.D., Guarner J. Animal models and vaccines for SARS-CoV infection. Virus Res. 2008;133(1):20–32.
    1. Flipse J., Diosa-Toro M.A., Hoornweg T.E., van de Pol D.P., Urcuqui-Inchima S., Smit J.M. Antibody-Dependent Enhancement of Dengue Virus Infection in Primary Human Macrophages. Balancing Higher Fusion against Antiviral Responses. Sci Rep. 2016;6:29201.
    1. Cheung C.Y., Poon L.L., Ng I.H., Luk W., Sia S.F., Wu M.H. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J. Virol. 2005;79(12):7819–7826.
    1. de Bree L.C.J., Koeken V., Joosten L.A.B., Aaby P., Benn C.S., van Crevel R. Non-specific effects of vaccines: Current evidence and potential implications. Semin. Immunol. 2018;39:35–43.
    1. Goodridge H.S., Ahmed S.S., Curtis N., Kollmann T.R., Levy O., Netea M.G. Harnessing the beneficial heterologous effects of vaccination. Nat. Rev. Immunol. 2016;16(6):392–400.
    1. Hedrich C.M. COVID-19 - Considerations for the paediatric rheumatologist. Clin. Immunol. 2020;214:108420.
    1. Chen J.J.Q.X., Liu K., Yu Z., Tao W., Gong W., Han J.D.J. Individual Variation of the SARS-CoV2 Receptor ACE2 Gene Expression and Regulation. Individual Variation of the SARS-CoV2 Receptor ACE2 Gene Expression and Regulation. 2020.
    1. Silva AC Simoes E., Silveira K.D., Ferreira A.J., Teixeira M.M. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br. J. Pharmacol. 2013;169(3):477–492.
    1. Savarino A., Boelaert J.R., Cassone A., Majori G., Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect. Dis. 2003;3(11):722–727.
    1. Yan Y., Zou Z., Sun Y., Li X., Xu K.F., Wei Y. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 2013;23(2):300–302.
    1. Keyaerts E., Vijgen L., Maes P., Neyts J., Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun. 2004;323(1):264–268.
    1. Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek T.G. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2005;2:69.
    1. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271.
    1. Gao J., Tian Z., Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72–73.
    1. Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Mailhe M. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents. 2020;105949
    1. Molina J.M., Delaugerre C., Le Goff J., Mela-Lima B., Ponscarme D., Goldwirt L. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med. Mal. Infect. 2020 doi: 10.1016/j.medmal.2020.03.006. pii: S0399-077X(20)30085-8. [Epub ahead of print]
    1. Magagnoli J.N., Pereira F., Cummings T., Hardin J.W., Sutton S.S., Ambati J. Outcomes of Hydroxychloroquine usage in United States veterans hospitalized with COVID-19. medRciv Server. 2020 doi: 10.1101/2020.04.16.20065920.
    1. MGFAV Silva Borba, Sousa Sampaio V., Almeida Araújo Alexandre M., Cardoso Melo G., Brito M., Gomes Mourão M.P., Brito-Sousa J.D., Baía-da-Silva D. Chloroquine diphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS-CoV-2) infection: Preliminary safety results of a randomized, double-blinded, phase IIb clinical trial (CloroCovid-19 Study) medRxiv Preprint. 2020
    1. Zhou D., Dai S.M., Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J. Antimicrob. Chemother. 2020 doi: 10.1093/jac/dkaa114. pii: dkaa114. [Epub ahead of print]
    1. Ziegler H.K., Unanue E.R. Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells. Proc. Natl. Acad. Sci. U. S. A. 1982;79(1):175–178.
    1. Ben-Zvi I., Kivity S., Langevitz P., Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin. Rev. Allergy Immunol. 2012;42(2):145–153.
    1. Nosal R., Jancinova V., Petrikova M. Chloroquine inhibits stimulated platelets at the arachidonic acid pathway. Thromb. Res. 1995;77(6):531–542.
    1. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020 doi: 10.1111/jth.14817. [Epub ahead of print]
    1. Chatre C., Roubille F., Vernhet H., Jorgensen C., Pers Y.M. Cardiac Complications Attributed to Chloroquine and Hydroxychloroquine: A Systematic Review of the Literature. Drug Saf. 2018;41(10):919–931.
    1. Costedoat-Chalumeau N., Dunogue B., Leroux G., Morel N., Jallouli M., Le Guern V. A Critical Review of the Effects of Hydroxychloroquine and Chloroquine on the Eye. Clin. Rev. Allergy Immunol. 2015;49(3):317–326.
    1. Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Sevestre J. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med. Infect. Dis. 2020;101663
    1. Andreania J.L.B., Duflota I., Jardota P., Rollanda C., Boxberger M., Bou Khalila J.Y., Baudouin J.P., Wurtza N. vitro testing of Hydroxychloroquine and Azithromycin on SARS-CoV-2 shows synergistic effect. Mediterranee Infection. 2020.
    1. Haydar D., Cory T.J., Birket S.E., Murphy B.S., Pennypacker K.R., Sinai A.P. Azithromycin Polarizes Macrophages to an M2 Phenotype via Inhibition of the STAT1 and NF-kappaB Signaling Pathways. J. Immunol. 2019;203(4):1021–1030.
    1. Gensel J.C., Kopper T.J., Zhang B., Orr M.B., Bailey W.M. Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment. Sci. Rep. 2017;7:40144.
    1. Walkey A.J., Wiener R.S. Macrolide antibiotics and survival in patients with acute lung injury. Chest. 2012;141(5):1153–1159.
    1. Kawamura K., Ichikado K., Suga M., Yoshioka M. Efficacy of azithromycin for treatment of acute exacerbation of chronic fibrosing interstitial pneumonia: a prospective, open-label study with historical controls. Respiration. 2014;87(6):478–484.
    1. Kawamura K., Ichikado K., Takaki M., Eguchi Y., Anan K., Suga M. Adjunctive therapy with azithromycin for moderate and severe acute respiratory distress syndrome: a retrospective, propensity score-matching analysis of prospectively collected data at a single center. Int. J. Antimicrob. Agents. 2018;51(6):918–924.
    1. Garcia-Cremades M., Solans B.P., Hughes E., Ernest J.P., Wallender E., Aweeka F. Optimizing hydroxychloroquine dosing for patients with COVID-19: An integrative modeling approach for effective drug repurposing. Clin. Pharmacol. Ther. 2020 doi: 10.1002/cpt.1856. [Epub ahead of print]
    1. Sapp J.L., Alqarawi W., MacIntyre C.J., Tadros R., Steinberg C., Roberts J.D. Guidance On Minimizing Risk of Drug-Induced Ventricular Arrhythmia During Treatment of COVID-19: A Statement from the Canadian Heart Rhythm Society. Can J Cardiol. 2020 doi: 10.1016/j.cjca.2020.04.003. pii: S0828-282X(20)30325-1. [Epub ahead of print]
    1. Siegel D., Hui H.C., Doerffler E., Clarke M.O., Chun K., Zhang L. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J. Med. Chem. 2017;60(5):1648–1661.
    1. Agostini M.L., Andres E.L., Sims A.C., Graham R.L., Sheahan T.P., Lu X. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) Is mediated by the viral polymerase and the proofreading exoribonuclease. mBio. 2018;9(2)
    1. Sheahan T.P., Sims A.C., Leist S.R., Schafer A., Won J., Brown A.J. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020;11(1):222.
    1. Gordon C.J., Tchesnokov E.P., Feng J.Y., Porter D.P., Gotte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem. 2020;295(15):4773–4779.
    1. Tchesnokov E.P., Feng J.Y., Porter D.P., Gotte M. Mechanism of inhibition of ebola virus RNA-dependent rna polymerase by remdesivir. Viruses. 2019;11(4)
    1. Hillaker E., Belfer J.J., Bondici A., Murad H., Dumkow L.E. Delayed Initiation of Remdesivir in a COVID-19 Positive Patient. Pharmacotherapy. 2020 doi: 10.1002/phar.2403. [Epub ahead of print]
    1. Holshue M.L., DeBolt C., Lindquist S., Lofy K.H., Wiesman J., Bruce H. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020;382(10):929–936.
    1. Grein J., Ohmagari N., Shin D., Diaz G., Asperges E., Castagna A. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2007016. [Epub ahead of print]
    1. Chandwani A., Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Ther. Clin. Risk Manag. 2008;4(5):1023–1033.
    1. Chu C.M., Cheng V.C., Hung I.F., Wong M.M., Chan K.H., Chan K.S. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252–256.
    1. Chan K.S., Lai S.T., Chu C.M., Tsui E., Tam C.Y., Wong M.M. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J. 2003;9(6):399–406.
    1. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2001282. [Epub ahead of print]
    1. Abassi Z.A., Skorecki K., Heyman S.N., Kinaneh S., Armaly Z. Covid-19 infection and mortality - A physiologist’s perspective enlightening clinical features and plausible interventional strategies. Am. J. Phys. Lung Cell. Mol. Phys. 2020 doi: 10.1152/ajplung.00097.2020. [Epub ahead of print]
    1. Jakovac H. 2020. COVID-19 - is the ACE2 just a foe? Am J Physiol Lung Cell Mol Physiol.
    1. Li Y., Cao Y., Zeng Z., Liang M., Xue Y., Xi C. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis prevents lipopolysaccharide-induced apoptosis of pulmonary microvascular endothelial cells by inhibiting JNK/NF-kappaB pathways. Sci. Rep. 2015;5:8209.
    1. Ye R., Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp. Mol. Pathol. 2020;113:104350.
    1. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–116.
    1. Marshall R.P., Gohlke P., Chambers R.C., Howell D.C., Bottoms S.E., Unger T. Angiotensin II and the fibroproliferative response to acute lung injury. Am. J. Phys. Lung Cell. Mol. Phys. 2004;286(1):L156–L164.
    1. Wu Y. Compensation of ACE2 Function for Possible Clinical Management of 2019-nCoV-Induced Acute Lung Injury. Virol. Sin. 2020;286(1):L156–L164. Epub 2003 May 16.
    1. Batlle D., Wysocki J., Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clin. Sci. (Lond.) 2020;134(5):543–545.
    1. Harmer D., Gilbert M., Borman R., Clark K.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532(1–2):107–110.
    1. Wang W., Xu Y., Gao R., Lu R., Han K., Wu G. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. 2020 doi: 10.1001/jama.2020.3786. [Epub ahead of print]
    1. Xiao F., Tang M., Zheng X., Liu Y., Li X., Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020 doi: 10.1053/j.gastro.2020.02.055. pii: S0016-5085(20)30282-1. [Epub ahead of print]
    1. Khan A., Benthin C., Zeno B., Albertson T.E., Boyd J., Christie J.D. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit. Care. 2017;21(1):234.
    1. Wang X., Xu W., Hu G., Xia S., Sun Z., Liu Z. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell. Mol. Immunol. 2020 doi: 10.1038/s41423-020-0424-9. [Epub ahead of print]
    1. Arabi Y.M., Shalhoub S., Mandourah Y., Al-Hameed F., Al-Omari A., Al Qasim E. Ribavirin and Interferon Therapy for Critically Ill Patients With Middle East Respiratory Syndrome: A Multicenter Observational Study. Clin. Infect. Dis. 2020;70(9):1837–1844.
    1. Morra M.E., Van Thanh L., Kamel M.G., Ghazy A.A., Altibi A.M.A., Dat L.M. Clinical outcomes of current medical approaches for Middle East respiratory syndrome: A systematic review and meta-analysis. Rev. Med. Virol. 2018;28(3)
    1. Channappanavar R., Fehr A.R., Zheng J., Wohlford-Lenane C., Abrahante J.E., Mack M. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J. Clin. Invest. 2019;130:3625–3639.
    1. Bloch E.M., Shoham S., Casadevall A., Sachais B.S., Shaz B., Winters J.L. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J. Clin. Invest. 2020 doi: 10.1172/JCI138745. pii: 138745. [Epub ahead of print]
    1. Luke T.C., Casadevall A., Watowich S.J., Hoffman S.L., Beigel J.H., Burgess T.H. Hark back: passive immunotherapy for influenza and other serious infections. Crit. Care Med. 2010;38(4 Suppl):e66–e73.
    1. Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.M., Lim W.S. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J. Infect. Dis. 2015;211(1):80–90.
    1. Casadevall A., Pirofski L.A. The convalescent sera option for containing COVID-19. J. Clin. Invest. 2020;130(4):1545–1548.
    1. Hung I.F., To KK, Lee C.K., Lee K.L., Chan K., Yan W.W. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin. Infect. Dis. 2011;52(4):447–456.
    1. Davey R.T., Jr., Fernandez-Cruz E., Markowitz N., Pett S., Babiker A.G., Wentworth D. Anti-influenza hyperimmune intravenous immunoglobulin for adults with influenza A or B infection (FLU-IVIG): a double-blind, randomised, placebo-controlled trial. Lancet Respir. Med. 2019;7(11):951–963.
    1. van Griensven J., Edwards T., de Lamballerie X., Semple M.G., Gallian P., Baize S. Evaluation of Convalescent Plasma for Ebola Virus Disease in Guinea. N. Engl. J. Med. 2016;374(1):33–42.
    1. Beigel J.H., Nam H.H., Adams P.L., Krafft A., Ince W.L., El-Kamary S.S. Advances in respiratory virus therapeutics - A meeting report from the 6th isirv Antiviral Group conference. Antivir. Res. 2019;167:45–67.
    1. Arabi Y.M., Hajeer A.H., Luke T., Raviprakash K., Balkhy H., Johani S. Feasibility of Using Convalescent Plasma Immunotherapy for MERS-CoV Infection. Saudi Arabia. Emerg Infect Dis. 2016;22(9):1554–1561.
    1. Kawiecki A.B., Christofferson R.C. Zika Virus-Induced Antibody Response Enhances Dengue Virus Serotype 2 Replication In Vitro. J. Infect. Dis. 2016;214(9):1357–1360.
    1. Seguin A., Galicier L., Boutboul D., Lemiale V., Azoulay E. Pulmonary Involvement in Patients With Hemophagocytic Lymphohistiocytosis. Chest. 2016;149(5):1294–1301.
    1. Gao Y., Li T., Han M., Li X., Wu D., Xu Y. Diagnostic Utility of Clinical Laboratory Data Determinations for Patients with the Severe COVID-19. J. Med. Virol. 2020 doi: 10.1002/jmv.25770. [Epub ahead of print]
    1. Ferro F., Elefante E., Baldini C., Bartoloni E., Puxeddu I., Talarico R. COVID-19: the new challenge for rheumatologists. Clin. Exp. Rheumatol. 2020;38(2):175–180.
    1. Henter J.I., Horne A., Arico M., Egeler R.M., Filipovich A.H., Imashuku S. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer. 2007;48(2):124–131.
    1. Schulert G.S., Zhang M., Fall N., Husami A., Kissell D., Hanosh A. Whole-Exome Sequencing Reveals Mutations in Genes Linked to Hemophagocytic Lymphohistiocytosis and Macrophage Activation Syndrome in Fatal Cases of H1N1 Influenza. J. Infect. Dis. 2016;213(7):1180–1188.
    1. Matthay M.A., Zemans R.L., Zimmerman G.A., Arabi Y.M., Beitler J.R., Mercat A. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18.
    1. Chang S.C. Clinical findings, treatment and prognosis in patients with severe acute respiratory syndrome (SARS) J Chin Med Assoc. 2005;68(3):106–107.
    1. Rowlands G., Tabassum B., Campbell P., Harvey S., Vaittinen A., Stobbart L. The evidence-based development of an intervention to improve clinical health literacy practice. Int. J. Environ. Res. Public Health. 2020;17(5)
    1. Griffith J.F., Antonio G.E., Kumta S.M., Hui D.S., Wong J.K., Joynt G.M. Osteonecrosis of hip and knee in patients with severe acute respiratory syndrome treated with steroids. Radiology. 2005;235(1):168–175.
    1. Shang L., Zhao J., Hu Y., Du R., Cao B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet. 2020;395(10225):683–684.
    1. Russell C.D., Millar J.E., Baillie J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473–475.
    1. Hoffmann J.H.O., Enk A.H. High-Dose Intravenous Immunoglobulin in Skin Autoimmune Disease. Front. Immunol. 2019;10:1090.
    1. Liu L., Wei Q., Lin Q., Fang J., Wang H., Kwok H. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019;4(4)
    1. Zhang L., Zhang F., Yu W., He T., Yu J., Yi C.E. Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals. J. Med. Virol. 2006;78(1):1–8.
    1. Prabagar M.G., Choi H.J., Park J.Y., Loh S., Kang Y.S. Intravenous immunoglobulin-mediated immunosuppression and the development of an IVIG substitute. Clin. Exp. Med. 2014;14(4):361–373.
    1. Maude S.L., Frey N., Shaw P.A., Aplenc R., Barrett D.M., Bunin N.J. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014;371(16):1507–1517.
    1. Zhang X., Song K., Tong F., Fei M., Guo H., Lu Z. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv. 2020;4(7):1307–1310.
    1. Michot J.M., Albiges L., Chaput N., Saada V., Pommeret F., Griscelli F. Tocilizumab, an anti-IL6 receptor antibody, to treat Covid-19-related respiratory failure: a case report. Ann. Oncol. 2020 doi: 10.1016/j.annonc.2020.03.300. pii: S0923-7534(20)36387-0. [Epub ahead of print]
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034.
    1. Shakoory B., Carcillo J.A., Chatham W.W., Amdur R.L., Zhao H., Dinarello C.A. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients With Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Crit. Care Med. 2016;44(2):275–281.
    1. Hedrich C.M., Bruck N., Fiebig B., Gahr M. Anakinra: a safe and effective first-line treatment in systemic onset juvenile idiopathic arthritis (SoJIA) Rheumatol. Int. 2012;32(11):3525–3530.
    1. Nigrovic P.A., Mannion M., Prince F.H., Zeft A., Rabinovich C.E., van Rossum M.A. Anakinra as first-line disease-modifying therapy in systemic juvenile idiopathic arthritis: report of forty-six patients from an international multicenter series. Arthritis Rheum. 2011;63(2):545–555.
    1. Sonmez H.E., Demir S., Bilginer Y., Ozen S. Anakinra treatment in macrophage activation syndrome: a single center experience and systemic review of literature. Clin. Rheumatol. 2018;37(12):3329–3335.
    1. Seo S.U., Kweon M.N. Virome-host interactions in intestinal health and disease. Curr Opin Virol. 2019;37:63–71.
    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062.
    1. Lai C.C., Liu Y.H., Wang C.Y., Wang Y.H., Hsueh S.C., Yen M.Y. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J Microbiol Immunol Infect. 2020 doi: 10.1016/j.jmii.2020.02.012. pii: S1684-1182(20)30040-2. [Epub ahead of print]
    1. D'Antiga L. The facts during the third epidemic; Liver Transpl: 2020. Coronaviruses and immunosuppressed patients.
    1. (ACR). Coronavirus Disease (COVID-19). https://wwwrheumatologyorg/announcements. 2020.
    1. (EULAR). EULAR Guidance for patients COVID-19 https://wwweularorg/eular_guidance_for_patients_covid19_outbreakcfm. 2020.

Source: PubMed

3
Sottoscrivi