Myelodysplastic Syndrome-Associated SRSF2 Mutations Cause Splicing Changes by Altering Binding Motif Sequences

So Masaki, Shun Ikeda, Asuka Hata, Yusuke Shiozawa, Ayana Kon, Seishi Ogawa, Kenji Suzuki, Fumihiko Hakuno, Shin-Ichiro Takahashi, Naoyuki Kataoka, So Masaki, Shun Ikeda, Asuka Hata, Yusuke Shiozawa, Ayana Kon, Seishi Ogawa, Kenji Suzuki, Fumihiko Hakuno, Shin-Ichiro Takahashi, Naoyuki Kataoka

Abstract

Serine/arginine-rich splicing factor 2 (SRSF2) is a member of the SR protein family that is involved in both constitutive and alternative mRNA splicing. Mutations in SRSF2 gene are frequently reported in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). It is imperative to understand how these mutations affect SRSF2-mediated splicing and cause MDS. In this study, we characterized MDS-associated SRSF2 mutants (P95H, P95L, and P95R). We found that those mutants and wild-type SRSF2 proteins showed nuclear localization in HeLa cells. In vitro splicing reaction also revealed that mutant proteins associated with both precursor and spliced mRNAs, suggesting that the mutants directly participate in splicing. We established the human myeloid leukemia K562 cell lines that stably expressed myc-tagged wild-type or mutant SRSF2 proteins, and then performed RNA-sequence to analyze the splicing pattern of each cell line. The results revealed that both wild-type and mutants affected splicing of approximately 3,000 genes. Although splice site sequences adjacent to the affected exons showed no significant difference compared to the total exons, exonic motif analyses with both inclusion- and exclusion-enhanced exons demonstrated that wild-type and mutants have different binding sequences in exons. These results indicate that mutations of SRSF2 in MDS change binding properties of SRSF2 to exonic motifs and this causes aberrant splicing.

Keywords: EZH2 (enhancer of zeste homolog 2); SRSF2; aberrant splicing; exonic splicing enhancer; myelodysplastic syndrome; splicing.

Figures

FIGURE 1
FIGURE 1
MDS-causing SRSF2 mutant proteins are localized in the nuclei and associate with pre-mRNA and mRNA in vitro. (A) HeLa cells were transfected with expression vectors encoding either wild-type or mutant SRSF2 proteins (P95H, P95L, and P95R) fused with myc-tag. (B)In vitro splicing reaction in the presence of either Flag-tagged wild-type SRSF2 protein or mutant proteins followed by immunoprecipitation of RNAs by anti-Flag M2 antibody. (C) Immunoprecipitation of SRSF2 proteins by anti-Flag antibody from in vitro splicing reaction. Five percent of total reaction mixture was used as an input. The anti-Flag M2 antibody was used for detection of Flag-tagged SRSF2 proteins.
FIGURE 2
FIGURE 2
Analyses of splicing changes in K562 cells stably expressing either wild-type or mutant SRSF2 protein. (A) Immunoblotting analyses of K562 cell lines stably expressing myc-tagged wild-type or mutant SRSF2 proteins. A myc-vector was used as a negative control. (B) Numbers of reads from RNA sequence analyses and mapping percentage of sequence tags. (C) Numbers of altered splicing events and genes identified by comparing with myc-vector transfected cells. (D) Venn diagram comparing the differentially spliced genes among myc-vector, WT and three SRSF2 mutants expressing cells.
FIGURE 3
FIGURE 3
SRSF2 mutants promote exon 9.5 of EZH2 gene through binding to CCWG motif. (A) Sequence logos for the motifs enriched in inclusion-type exons with WT, P95H, P95L, and P95R are presented. (B) Sequence logos for the motifs enriched in inclusion-type exons with WT, P95H, P95L, and P95R are shown. (C) Sequence of exon 9.5 (pseudo exon) in human EZH2 gene. In frame stop codons are underlined. CCWG motif, found with SRSF2 P95H and P95R proteins in (B), are indicated with open boxes. (D) Splicing pattern of EZH2 pre-mRNA in myc-vector, SRSF2 WT, P95H, P95L, and P95R are indicated. The ratio of exon9.5 included product in total splicing products is shown beneath the panel. The schematic representations of PCR products are shown at the right side of the panel. RT, Reverse Transcriptase. M, DNA size marker.
FIGURE 4
FIGURE 4
A model for splicing changes caused by SRSF2 mutations in the patients. (Left) SRSF2 wild-type protein binds to purine-rich exonic splicing enhancer for promotion of exon recognition. (Right) SRSF2 mutants, SRSF2 P95H and P95R, preferentially bind to CCWG motif-containing exons to promote aberrant splicing.

References

    1. Bailey T. L., Williams N., Misleh C., Li W. W. (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 34 W369–W373. 10.1093/nar/gkl198
    1. Brooks A. N., Choi P. S., de Waal L., Sharifnia T., Imielinski M., Saksena G., et al. (2014). A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS One 9:e87361. 10.1371/journal.pone.0087361
    1. Cavaloc Y., Bourgeois C. F., Kister L., Stevenin J. (1999). The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers. RNA 5 468–483. 10.1017/s1355838299981967
    1. Cazzola M., Della Porta M. G., Malcovati L. (2013). The genetic basis of myelodysplasia and its clinical relevance. Blood 122 4021–4034. 10.1182/blood-2013-09-381665
    1. Chen L., Chen J. Y., Huang Y. J., Gu Y., Qiu J., Qian H., et al. (2018). The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations. Mol. Cell. 69:e6. 10.1016/j.molcel.2017.12.029
    1. Chen M., Manley J. L. (2009). Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 10 741–754. 10.1038/nrm2777
    1. Darman R. B., Seiler M., Agrawal A. A., Lim K. H., Peng S., Aird D., et al. (2015). Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 13 1033–1045. 10.1016/j.celrep.2015.09.053
    1. Ernst T., Chase A. J., Score J., Hidalgo-Curtis C. E., Bryant C., Jones A. V., et al. (2010). Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42 722–726. 10.1038/ng.621
    1. Fu X. D., Ares M., Jr. (2014). Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15 689–701. 10.1038/nrg3778
    1. Fu X. D., Maniatis T. (1990). Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature 343 437–441. 10.1038/343437a0
    1. Graubert T. A., Shen D., Ding L., Okeyo-Owuor T., Lunn C. L., Shao J., et al. (2011). Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat. Genet. 44 53–57. 10.1038/ng.1031
    1. Haferlach T., Nagata Y., Grossmann V., Okuno Y., Bacher U., Nagae G. (2014). Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28 241–247. 10.1038/leu.2013.336
    1. Han J., Ding J. H., Byeon C. W., Kim J. H., Hertel K. J., Jeong S., et al. (2011). SR proteins induce alternative exon skipping through their activities on the flanking constitutive exons. Mol. Cell. Biol. 4 793–802. 10.1128/MCB.01117-10
    1. Howard J. M., Sanford J. R. (2015). The RNAissance family: SR proteins as multifaceted regulators of gene expression. Wiley Interdiscip. Rev. RNA 6 93–110. 10.1002/wrna.1260
    1. Ilagan J. O., Ramakrishnan A., Hayes B., Murphy M. E., Zebari A. S., Bradley P., et al. (2015). U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 25 14–26. 10.1101/gr.181016.114
    1. Kamburov A., Lawrence M. S., Polak P., Leshchiner I., Lage K., Golub T. R., et al. (2015). Comprehensive assessment of cancer missense mutation clustering in protein structures. Proc. Natl. Acad. Sci. U.S.A. 112 E5486–E5495. 10.1073/pnas.1516373112
    1. Kataoka N. (2016). Purification of RNA-protein splicing complexes using a tagged protein from in vitro splicing reaction mixture. Methods Mol. Biol. 1421 45–52. 10.1007/978-1-4939-3591-8_5
    1. Kataoka N. (2017). Modulation of aberrant splicing in human RNA diseases by chemical compounds. Hum. Genet. 136 1237–1245. 10.1007/s00439-017-1789-4
    1. Kataoka N., Diem M. D., Kim V. N., Yong J., Dreyfuss G. (2001). Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J. 20 6424–6433. 10.1093/emboj/20.22.6424
    1. Kataoka N., Diem M. D., Yoshida M., Hatai C., Dobashi I., Dreyfuss G. (2011). Specific Y14 domains mediate its nucleo-cytoplasmic shuttling and association with spliced mRNA. Sci. Rep. 1:92. 10.1038/srep00092
    1. Kataoka N., Dreyfuss G. (2004). A simple whole cell lysate system for in vitro splicing reveals a stepwise assembly of the exon-exon junction complex. J. Biol. Chem. 279 7009–7013. 10.1074/jbc.M307692200
    1. Kataoka N., Dreyfuss G. (2008). Preparation of efficient splicing extracts from whole cells, nuclei, and cytoplasmic fractions. Methods Mol. Biol. 488 357–365. 10.1007/978-1-60327-475-3_23
    1. Kawano T., Kataoka N., Dreyfuss G., Sakamoto H. (2004). Ce-Y14 and MAG-1, components of the exon-exon junction complex, are required for embryogenesis and germline sexual switching in Caenorhabditis elegans. Mech. Dev. 121 27–35. 10.1016/j.mod.2003.11.003
    1. Kim E., Ilagan J. O., Liang Y., Daubner G. M., Lee S. C., Ramakrishnan A. (2015). SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27 617–630. 10.1016/j.ccell.2015.04.006
    1. Kim V. N., Kataoka N., Dreyfuss G. (2001). Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293 1832–1836. 10.1126/science.1062829
    1. Komeno Y., Huang Y. J., Qiu J., Lin L., Xu Y., Zhou Y. (2015). SRSF2 is essential for hematopoiesis, and its myelodysplastic syndrome-related mutations dysregulate alternative pre-mRNA splicing. Mol. Cell. Biol. 35 3071–3082. 10.1128/MCB.00202-15
    1. Kon A., Yamazaki S., Nannya Y., Kataoka K., Ota Y., Nakagawa M. M. (2018). Physiological Srsf2 P95H expression causes impaired hematopoietic stem cell functions and aberrant RNA splicing in mice. Blood 131 621–635. 10.1182/blood-2017-01-762393
    1. Manley J. L., Krainer A. R. (2010). A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes Dev. 24 1073–1074. 10.1101/gad.1934910
    1. Mayeda A., Screaton G. R., Chandler S. D., Fu X. D., Krainer A. R. (1999). Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements. Mol. Cell. Biol. 19 1853–1863. 10.1128/mcb.19.3.1853
    1. Mupo A., Seiler M., Sathiaseelan V., Pance A., Yang Y., Agrawal A. A. (2017). Hemopoietic-specific Sf3b1-K700E knock-in mice display the splicing defect seen in human MDS but develop anemia without ring sideroblasts. Leukemia 31 720–727. 10.1038/leu.2016.251
    1. Nguyen H. D., Leong W. Y., Li W., Reddy P. N. G., Sullivan J. D., Walter M. J., et al. (2018). Spliceosome mutations induce r loop-associated sensitivity to ATR Inhibition in myelodysplastic syndromes. Cancer Res. 78 5363–5374. 10.1158/0008-5472.CAN-17-3970
    1. Obeng E. A., Chappell R. J., Seiler M., Chen M. C., Campagna D. R., Schmidt P. J., et al. (2016). Physiologic expression of Sf3b1(K700E) causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell 30 404–417. 10.1016/j.ccell.2016.08.006
    1. Papaemmanuil E., Cazzola M., Boultwood J., Malcovati L., Vyas P., Bowen D., et al. (2011). Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365 1384–1395. 10.1056/NEJMoa1103283
    1. Papaemmanuil E., Gerstung M., Malcovati L., Tauro S., Gundem G., Van Loo P., et al. (2013). Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122 3616–3627. 10.1182/blood-2013-08-518886
    1. Przychodzen B., Jerez A., Guinta K., Sekeres M. A., Padgett R., Maciejewski J. P., et al. (2013). Patterns of missplicing due to somatic U2AF1 mutations in myeloid neoplasms. Blood 122 999–1006. 10.1182/blood-2013-01-480970
    1. Schneider C. A., Rasband W. S., Eliceiri K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9 671–675. 10.1038/nmeth.2089
    1. Shao C., Yang B., Wu T., Huang J., Tang P., Zhou Y., et al. (2014). Mechanisms for U2AF to define 3′ splice sites and regulate alternative splicing in the human genome. Nat. Struct. Mol. Biol. 21 997–1005. 10.1038/nsmb.2906
    1. Shiozawa Y., Malcovati L., Galli A., Sato-Otsubo A., Kataoka K., Sato Y., et al. (2018). Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nat. Commun. 9:3649. 10.1038/s41467-018-06063-x
    1. Shirahata-Adachi M., Iriyama C., Tomita A., Suzuki Y., Shimada K., Kiyoi H. (2017). Altered EZH2 splicing and expression is associated with impaired histone H3 lysine 27 tri-Methylation in myelodysplastic syndrome. Leuk. Res. 63 90–97. 10.1016/j.leukres.2017.10.015
    1. Shirai C. L., Ley J. N., White B. S., Kim S., Tibbitts J., Shao J., et al. (2015). Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell 27 631–643. 10.1016/j.ccell.2015.04.008
    1. Walter M. J., Shen D., Shao J., Ding L., White B. S., Kandoth C., et al. (2013). Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia 27 1275–1282. 10.1038/leu.2013.58
    1. Wang D. O., Ninomiya K., Mori C., Koyama A., Haan M., Kitabatake M., et al. (2017). Transport granules bound with nuclear cap binding protein and exon junction complex are associated with microtubules and spatially separated from eIF4E granules and p bodies in human neuronal processes. Front. Mol. Biosci. 4:93. 10.3389/fmolb.2017.00093
    1. Watakabe A., Inoue K., Sakamoto H., Shimura Y. (1989). A secondary structure at the 3′ splice site affects the in vitro splicing reaction of mouse immunoglobulin mu chain pre-mRNAs. Nucleic Acids Res. 17 8159–8169. 10.1093/nar/17.20.8159
    1. Watakabe A., Tanaka K., Shimura Y. (1993). The role of exon sequences in splice site selection. Genes Dev. 7 407–418. 10.1101/gad.7.3.407
    1. Yoshida K., Sanada M., Shiraishi Y., Nowak D., Nagata Y., Yamamoto R., et al. (2011). Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478 64–69. 10.1038/nature10496
    1. Zhang J., Lieu Y. K., Ali A. M., Penson A., Reggio K. S., Rabadan R., et al. (2015). Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc. Natl. Acad. Sci. U.S.A. 112 E4726–E4734. 10.1073/pnas.1514105112

Source: PubMed

3
Sottoscrivi