A large, cross-sectional observational study of serum BDNF, cognitive function, and mild cognitive impairment in the elderly

Hiroyuki Shimada, Hyuma Makizako, Takehiko Doi, Daisuke Yoshida, Kota Tsutsumimoto, Yuya Anan, Kazuki Uemura, Sangyoon Lee, Hyuntae Park, Takao Suzuki, Hiroyuki Shimada, Hyuma Makizako, Takehiko Doi, Daisuke Yoshida, Kota Tsutsumimoto, Yuya Anan, Kazuki Uemura, Sangyoon Lee, Hyuntae Park, Takao Suzuki

Abstract

Objective: The clinical relationship between brain-derived neurotrophic factor (BDNF) and cognitive function or mild cognitive impairment (MCI) is not well-understood. The purpose of this study was to identify the relationship between serum BDNF and cognitive function and MCI, and determine whether serum BDNF level might be a useful biomarker for assessing risk for MCI in older people.

Materials and methods: A total of 4463 individuals aged 65 years or older (mean age 72 years) participating in the study. We measured performance in a battery of neuropsychological and cognitive function tests; serum BDNF concentration.

Results: Eight hundred twenty-seven participants (18.8%) had MCI. After adjustment for sex, age, education level, diabetes, and current smoking, serum BDNF was associated with poorer performance in the story memory, and digit symbol substitution task scores. Serum BDNF was marginally associated with the presence of MCI (odds ratio, 95% confidence interval: 1.41, 1.00-1.99) when BDNF was 1.5 SD lower than the mean value standardized for sex and age, education level, diabetes, and current smoking.

Conclusion: Low serum BDNF was associated with lower cognitive test scores and MCI. Future prospective studies should establish the discriminative value of serum BDNF for the risk of MCI.

Keywords: aged; biomarker; brain-derived neurotrophic factor; cognition; dementia.

Figures

Figure 1
Figure 1
Flow of participants. A total of 4463 participants >65 years of age were included in the study. BDNF levels were measured and the participants were divided into those with higher or lower BDNF levels below 1.0 and 1.5 standard deviations from the mean age- and sex-adjusted BDNF value.
Figure 2
Figure 2
Sex and age differences in serum BDNF concentration. Mean and standard error of serum BDNF levels are shown for each 5-year increment in age. Serum BDNF decreased with aging in men (black bars) and women (white bars; P < 0.001) and women showed higher BDNF levels than men (P = 0.031).

References

    1. Angelucci F., Spalletta G., Di Iulio F., Ciaramella A., Salani F., Colantoni L., et al. (2010). Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients are characterized by increased BDNF serum levels. Curr. Alzheimer Res. 7, 15–2010.2174/156720510790274473
    1. Anthony J. C., Leresche L., Niaz U., Von Korff M. R., Folstein M. F. (1982). Limits of the ‘mini-mental state’ as a screening test for dementia and delirium among hospital patients. Psychol. Med. 12, 397–40810.1017/S0033291700046730
    1. Bhang S. Y., Choi S. W., Ahn J. H. (2010). Changes in plasma brain-derived neurotrophic factor levels in smokers after smoking cessation. Neurosci. Lett. 468, 7–1110.1016/j.neulet.2009.10.046
    1. Bus B. A., Molendijk M. L., Penninx B. J., Buitelaar J. K., Kenis G., Prickaerts J., et al. (2011). Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinology 36, 228–23910.1016/j.psyneuen.2010.07.013
    1. Bus B. A., Tendolkar I., Franke B., De Graaf J., Heijer M. D., Buitelaar J. K., et al. (2012). Serum brain-derived neurotrophic factor: determinants and relationship with depressive symptoms in a community population of middle-aged and elderly people. World J. Biol. Psychiatry 13, 39–4710.3109/15622975.2010.545187
    1. Correll J. A., Noel D. M., Sheppard A. B., Thompson K. N., Li Y., Yin D., et al. (2009). Nicotine sensitization and analysis of brain-derived neurotrophic factor in adolescent beta-arrestin-2 knockout mice. Synapse 63, 510–51910.1002/syn.20625
    1. Cunha A. B., Frey B. N., Andreazza A. C., Goi J. D., Rosa A. R., Goncalves C. A., et al. (2006). Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci. Lett. 398, 215–21910.1016/j.neulet.2005.12.085
    1. Diniz B. S., Reynolds C. F., III, Begley A., Dew M. A., Anderson S. J., Lotrich F., et al. (2014). Brain-derived neurotrophic factor levels in late-life depression and comorbid mild cognitive impairment: a longitudinal study. J. Psychiatr. Res. 49, 96–10110.1016/j.jpsychires.2013.11.004
    1. Egan M. F., Kojima M., Callicott J. H., Goldberg T. E., Kolachana B. S., Bertolino A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–26910.1016/S0092-8674(03)00035-7
    1. Elliott E., Atlas R., Lange A., Ginzburg I. (2005). Brain-derived neurotrophic factor induces a rapid dephosphorylation of tau protein through a PI-3 kinase signalling mechanism. Eur. J. Neurosci. 22, 1081–108910.1111/j.1460-9568.2005.04290.x
    1. Erickson K. I., Prakash R. S., Voss M. W., Chaddock L., Hu L., Morris K. S., et al. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19, 1030–103910.1002/hipo.20547
    1. Figurov A., Pozzo-Miller L. D., Olafsson P., Wang T., Lu B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–70910.1038/381706a0
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–19810.1016/0022-3956(75)90026-6
    1. Frodl T., Schaub A., Banac S., Charypar M., Jager M., Kummler P., et al. (2006). Reduced hippocampal volume correlates with executive dysfunctioning in major depression. J. Psychiatry Neurosci. 31, 316–323
    1. Gezen-Ak D., Dursun E., Hanagasi H., Bilgic B., Lohman E., Araz O. S., et al. (2013). BDNF, TNFalpha, HSP90, CFH, and IL-10 serum levels in patients with early or late onsetalzheimer’s disease or mild cognitive impairment. J. Alzheimers Dis. 37, 185–19510.3233/JAD-130497
    1. Hanninen T., Hallikainen M., Tuomainen S., Vanhanen M., Soininen H. (2002). Prevalence of mild cognitive impairment: a population-based study in elderly subjects. Acta Neurol. Scand. 106, 148–15410.1034/j.1600-0404.2002.01225.x
    1. Hock C., Heese K., Hulette C., Rosenberg C., Otten U. (2000). Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch. Neurol. 57, 846–85110.1001/archneur.57.6.846
    1. Hyman C., Hofer M., Barde Y. A., Juhasz M., Yancopoulos G. D., Squinto S. P., et al. (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230–23210.1038/350230a0
    1. Iacono D., Markesbery W. R., Gross M., Pletnikova O., Rudow G., Zandi P., et al. (2009). The nun study: clinically silent AD, neuronal hypertrophy, and linguistic skills in early life. Neurology 73, 665–67310.1212/WNL.0b013e3181b01077
    1. Iacono D., O’Brien R., Resnick S. M., Zonderman A. B., Pletnikova O., Rudow G., et al. (2008). Neuronal hypertrophy in asymptomatic Alzheimer disease. J. Neuropathol. Exp. Neurol. 67, 578–58910.1097/NEN.0b013e3181772794
    1. Jungwirth S., Weissgram S., Zehetmayer S., Tragl K. H., Fischer P. (2005). VITA: subtypes of mild cognitive impairment in a community-based cohort at the age of 75 years. Int. J. Geriatr. Psychiatry 20, 452–45810.1002/gps.1311
    1. Kang H., Schuman E. M. (1995). Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658–166210.1126/science.7886457
    1. Karege F., Perret G., Bondolfi G., Schwald M., Bertschy G., Aubry J. M. (2002). Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 109, 143–14810.1016/S0165-1781(02)00005-7
    1. Kenny P. J., File S. E., Rattray M. (2000). Acute nicotine decreases, and chronic nicotine increases the expression of brain-derived neurotrophic factor mRNA in rat hippocampus. Brain Res. Mol. Brain Res. 85, 234–23810.1016/S0169-328X(00)00246-1
    1. Kim T. S., Kim D. J., Lee H., Kim Y. K. (2007). Increased plasma brain-derived neurotrophic factor levels in chronic smokers following unaided smoking cessation. Neurosci. Lett. 423, 53–5710.1016/j.neulet.2007.05.064
    1. Knaepen K., Goekint M., Heyman E. M., Meeusen R. (2010). Neuroplasticity – exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 40, 765–80110.2165/11534530-000000000-00000
    1. Knusel B., Winslow J. W., Rosenthal A., Burton L. E., Seid D. P., Nikolics K., et al. (1991). Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc. Natl. Acad. Sci. U.S.A. 88, 961–96510.1073/pnas.88.3.961
    1. Krabbe K. S., Nielsen A. R., Krogh-Madsen R., Plomgaard P., Rasmussen P., Erikstrup C., et al. (2007). Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50, 431–43810.1007/s00125-006-0537-4
    1. Lang U. E., Hellweg R., Gallinat J. (2004). BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits. Neuropsychopharmacology 29, 795–79810.1038/sj.npp.1300382
    1. Laske C., Stellos K., Hoffmann N., Stransky E., Straten G., Eschweiler G. W., et al. (2011). Higher BDNF serum levels predict slower cognitive decline in Alzheimer’s disease patients. Int. J. Neuropsychopharmacol. 14, 399–40410.1017/S1461145710001008
    1. Laske C., Stransky E., Leyhe T., Eschweiler G. W., Maetzler W., Wittorf A., et al. (2007). BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J. Psychiatr. Res. 41, 387–39410.1016/j.jpsychires.2006.01.014
    1. Laske C., Stransky E., Leyhe T., Eschweiler G. W., Wittorf A., Richartz E., et al. (2006). Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J. Neural Transm. 113, 1217–122410.1007/s00702-005-0397-y
    1. Makizako H., Shimada H., Park H., Doi T., Yoshida D., Uemura K., et al. (2012). Evaluation of multidimensional neurocognitive function using a tablet personal computer: test-retest reliability and validity in community-dwelling older adults. Geriatr. Gerontol. Int. 13, 860–86610.1111/ggi.12014
    1. Mamounas L. A., Blue M. E., Siuciak J. A., Altar C. A. (1995). Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J. Neurosci. 15, 7929–7939
    1. McKinney B. C., Sibille E. (2013). The age-by-disease interaction hypothesis of late-life depression. Am. J. Geriatr. Psychiatry 21, 418–43210.1016/j.jagp.2013.01.053
    1. Molendijk M. L., Bus B. A., Spinhoven P., Penninx B. W., Kenis G., Prickaerts J., et al. (2011). Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment. Mol. Psychiatry 16, 1088–109510.1038/mp.2010.98
    1. Murer M. G., Yan Q., Raisman-Vozari R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog. Neurobiol. 63, 71–12410.1016/S0301-0082(00)00014-9
    1. Ozan E., Okur H., Eker C., Eker O. D., Gonul A. S., Akarsu N. (2010). The effect of depression, BDNF gene val66met polymorphism and gender on serum BDNF levels. Brain Res. Bull. 81, 61–6510.1016/j.brainresbull.2009.06.022
    1. Peng S., Wuu J., Mufson E. J., Fahnestock M. (2005). Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J. Neurochem. 93, 1412–142110.1111/j.1471-4159.2005.03135.x
    1. Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256, 183–19410.1111/j.1365-2796.2004.01388.x
    1. Petersen R. C., Parisi J. E., Dickson D. W., Johnson K. A., Knopman D. S., Boeve B. F., et al. (2006). Neuropathologic features of amnestic mild cognitive impairment. Arch. Neurol. 63, 665–67210.1001/archneur.63.5.665
    1. Pezawas L., Verchinski B. A., Mattay V. S., Callicott J. H., Kolachana B. S., Straub R. E., et al. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J. Neurosci. 24, 10099–1010210.1523/JNEUROSCI.2680-04.2004
    1. Phillips H. S., Hains J. M., Laramee G. R., Rosenthal A., Winslow J. W. (1990). Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons. Science 250, 290–29410.1126/science.1688328
    1. Plassman B. L., Williams J. W., Jr., Burke J. R., Holsinger T., Benjamin S. (2010). Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life. Ann. Inter. Med. 153, 182–19310.1059/0003-4819-153-3-201008030-00258
    1. Riudavets M. A., Iacono D., Resnick S. M., O’Brien R., Zonderman A. B., Martin L. J., et al. (2007). Resistance to Alzheimer’s pathology is associated with nuclear hypertrophy in neurons. Neurobiol. Aging 28, 1484–149210.1016/j.neurobiolaging.2007.05.005
    1. Scharfman H. E., MacLusky N. J. (2006). Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS. Front. Neuroendocrinol. 27:415–43510.1016/j.yfrne.2006.09.004
    1. Schindowski K., Belarbi K., Buee L. (2008). Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Genes Brain Behav. 7(Suppl. 1), 43–5610.1111/j.1601-183X.2007.00378.x
    1. Schneider J. A., Arvanitakis Z., Leurgans S. E., Bennett D. A. (2009). The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann. Neurol. 66, 200–20810.1002/ana.21706
    1. Serres F., Carney S. L. (2006). Nicotine regulates SH-SY5Y neuroblastoma cell proliferation through the release of brain-derived neurotrophic factor. Brain Res. 1101, 36–4210.1016/j.brainres.2006.05.023
    1. Shimizu E., Hashimoto K., Okamura N., Koike K., Komatsu N., Kumakiri C., et al. (2003). Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol. Psychiatry 54, 70–7510.1016/S0006-3223(03)00181-1
    1. Sibille E. (2013). Molecular aging of the brain, neuroplasticity, and vulnerability to depression and other brain-related disorders. Dialogues Clin. Neurosci. 15, 53–65
    1. Szeszko P. R., Lipsky R., Mentschel C., Robinson D., Gunduz-Bruce H., Sevy S., et al. (2005). Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Mol. Psychiatry 10, 631–63610.1038/sj.mp.4001656
    1. Takahashi J., Palmer T. D., Gage F. H. (1999). Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J. Neurobiol. 38, 65–8110.1002/(SICI)1097-4695(199901)38:1<65::AID-NEU5>;2-H
    1. Tapia-Arancibia L., Aliaga E., Silhol M., Arancibia S. (2008). New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res. Rev. 59, 201–22010.1016/j.brainresrev.2008.07.007
    1. Terracciano A., Lobina M., Piras M. G., Mulas A., Cannas A., Meirelles O., et al. (2011). Neuroticism, depressive symptoms, and serum BDNF. Psychosom. Med. 73, 638–64210.1097/PSY.0b013e3182306a4f
    1. Tong L., Balazs R., Thornton P. L., Cotman C. W. (2004). Beta-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. J. Neurosci. 24, 6799–680910.1523/JNEUROSCI.5463-03.2004
    1. Trajkovska V., Marcussen A. B., Vinberg M., Hartvig P., Aznar S., Knudsen G. M. (2007). Measurements of brain-derived neurotrophic factor: methodological aspects and demographical data. Brain Res. Bull. 73, 143–14910.1016/j.brainresbull.2007.03.009
    1. Wall P. M., Messier C. (2001). The hippocampal formation – orbitomedial prefrontal cortex circuit in the attentional control of active memory. Behav. Brain Res. 127, 99–11710.1016/S0166-4328(01)00355-2
    1. Wang D. C., Chen S. S., Lee Y. C., Chen T. J. (2006). Amyloid-beta at sublethal level impairs BDNF-induced arc expression in cortical neurons. Neurosci. Lett. 398, 78–8210.1016/j.neulet.2005.12.057
    1. Wetmore C., Ernfors P., Persson H., Olson L. (1990). Localization of brain-derived neurotrophic factor mRNA to neurons in the brain by in situ hybridization. Exp. Neurol. 109, 141–15210.1016/0014-4886(90)90068-4
    1. Winblad B., Palmer K., Kivipelto M., Jelic V., Fratiglioni L., Wahlund L. O., et al. (2004). Mild cognitive impairment – beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J. Intern. Med. 256, 240–24610.1111/j.1365-2796.2004.01380.x
    1. Yaffe K., Middleton L. E., Lui L. Y., Spira A. P., Stone K., Racine C., et al. (2011). Mild cognitive impairment, dementia, and their subtypes in oldest old women. Arch. Neurol. 68, 631–63610.1001/archneurol.2011.82
    1. Yu H., Zhang Z., Shi Y., Bai F., Xie C., Qian Y., et al. (2008). Association study of the decreased serum BDNF concentrations in amnestic mild cognitive impairment and the Val66Met polymorphism in Chinese Han. J. Clin. Psychiatry 69, 1104–111110.4088/JCP.v69n0710
    1. Ziegenhorn A. A., Schulte-Herbruggen O., Danker-Hopfe H., Malbranc M., Hartung H. D., Anders D., et al. (2007). Serum neurotrophins – a study on the time course and influencing factors in a large old age sample. Neurobiol. Aging 28, 1436–144510.1016/j.neurobiolaging.2006.06.011

Source: PubMed

3
Sottoscrivi