Structural interpretation of the mutations in the beta-cardiac myosin that have been implicated in familial hypertrophic cardiomyopathy

I Rayment, H M Holden, J R Sellers, L Fananapazir, N D Epstein, I Rayment, H M Holden, J R Sellers, L Fananapazir, N D Epstein

Abstract

In 10-30% of hypertrophic cardiomyopathy kindreds, the disease is caused by > 29 missense mutations in the cardiac beta-myosin heavy chain (MYH7) gene. The amino acid sequence similarity between chicken skeletal muscle and human beta-cardiac myosin and the three-dimensional structure of the chicken skeletal muscle myosin head have provided the opportunity to examine the structural consequences of these naturally occurring mutations in human beta-cardiac myosin. This study demonstrates that the mutations are related to distinct structural and functional domains. Twenty-four are clustered around four specific locations in the myosin head that are (i) associated with the actin binding interface, (ii) around the nucleotide binding site, (iii) adjacent to the region that connects the two reactive cysteine residues, and (iv) in close proximity to the interface of the heavy chain with the essential light chain. The remaining five mutations are in the myosin rod. The locations of these mutations provide insight into the way they impair the functioning of this molecular motor and also into the mechanism of energy transduction.

References

    1. Biochemistry. 1983 Sep 27;22(20):4696-706
    1. J Biol Chem. 1983 May 10;258(9):5775-86
    1. EMBO J. 1986 Apr;5(4):823-6
    1. CRC Crit Rev Biochem. 1986;21(1):53-118
    1. J Cell Biol. 1987 Jul;105(1):29-39
    1. Nature. 1987 Aug 6-12;328(6130):536-9
    1. Annu Rev Cell Biol. 1987;3:379-421
    1. Nature. 1988 Jul 7;334(6177):74-6
    1. Biochemistry. 1988 Dec 13;27(25):8945-52
    1. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2204-8
    1. N Engl J Med. 1989 Nov 16;321(20):1372-8
    1. Cell. 1990 Sep 7;62(5):999-1006
    1. Nature. 1990 Sep 6;347(6288):44-9
    1. Nature. 1990 Nov 15;348(6298):217-21
    1. Genomics. 1990 Oct;8(2):194-206
    1. J Biochem. 1991 Jul;110(1):75-87
    1. N Engl J Med. 1992 Apr 23;326(17):1108-14
    1. Philos Trans R Soc Lond B Biol Sci. 1992 Apr 29;336(1276):55-60; discussion 60-1
    1. Circulation. 1992 Aug;86(2):345-52
    1. Biochem Biophys Res Commun. 1992 Oct 15;188(1):379-87
    1. J Clin Invest. 1992 Nov;90(5):1666-71
    1. Br Heart J. 1993 Feb;69(2):136-41
    1. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3993-7
    1. J Clin Invest. 1993 Jun;91(6):2861-5
    1. Science. 1993 Jul 2;261(5117):50-8
    1. Science. 1993 Jul 2;261(5117):58-65
    1. Biochem Biophys Res Commun. 1993 Jul 30;194(2):791-8
    1. Nat Genet. 1993 Jul;4(3):311-3
    1. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1504-10
    1. J Clin Invest. 1993 Dec;92(6):2807-13
    1. Circulation. 1994 Jan;89(1):22-32
    1. J Biol Chem. 1994 Jan 21;269(3):1603-5
    1. Trends Biochem Sci. 1994 Mar;19(3):129-34
    1. Cell. 1994 Jun 3;77(5):701-12
    1. Hum Mol Genet. 1994 Jun;3(6):1025-6
    1. Nature. 1957 Aug 17;180(4581):326-8
    1. Proc Natl Acad Sci U S A. 1973 Mar;70(3):718-22
    1. Biochemistry. 1974 Sep 10;13(19):3837-40
    1. J Biol Chem. 1975 Aug 10;250(15):6168-77
    1. Biochemistry. 1977 Dec 13;16(25):5559-63
    1. Biochem Biophys Res Commun. 1979 Aug 13;89(3):925-32
    1. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4966-70
    1. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387-95

Source: PubMed

3
Sottoscrivi