A randomized feasibility study of the effect of ascorbic acid on post-angioplasty restenosis of hemodialysis vascular access (NCT03524846)

Chung-Wei Yang, Chih-Cheng Wu, Chien-Ming Luo, Shao-Yuan Chuang, Chiu-Hui Chen, Yung-Fang Shen, Der-Cheng Tarng, Chung-Wei Yang, Chih-Cheng Wu, Chien-Ming Luo, Shao-Yuan Chuang, Chiu-Hui Chen, Yung-Fang Shen, Der-Cheng Tarng

Abstract

Restenosis remains a significant problem after angioplasty of hemodialysis vascular access. Both experimental and clinical studies have shown a protective effect of antioxidants against post-angioplasty restenosis. A prospective, randomized, feasibility study was conducted to investigate the effect of ascorbic acid to prevent restenosis. Ninety-three hemodialysis patients were randomized into three groups after angioplasty: placebo (n = 31), 300 mg ascorbic acid (n = 31), and 600 mg ascorbic acid (n = 31), treated intravenously 3 times per week for 3 months. Eighty-nine completed the clinical follow-up, and 81 had angiographic follow-up. In the angiographic follow-up, the mean (stand deviation) late loss of luminal diameter for the placebo, 300 mg, and 600 mg groups were 3.15 (1.68) mm, 2.52 (1.70) mm (P = 0.39 vs. placebo group), and 1.59 (1.67) mm (P = 0.006, vs. placebo group), with corresponding angiographic binary restenosis of 79%, 67% (P = 0.38 vs. placebo group), and 54% (P = 0.08 vs. placebo group). The post-interventional primary patency rates at 3 months were 47%, 55% (P = 0.59 vs. placebo group), and 70% (P = 0.18 vs. placebo group) for placebo, 300 mg, and 600 mg groups. Our results demonstrated that intravenous 600 mg ascorbic acid was a feasible therapy and might attenuate restenosis after angioplasty; however, its effect on post-interventional primary patency was modest.

Trial registration: ClinicalTrials.gov NCT03524846.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Flow of study participants.
Figure 2
Figure 2
Kaplan–Meier plots of post-interventional primary patency of access circuit (left) and target lesion (right) within a 3-month follow-up period after angioplasty, stratified by placebo, 300 mg, and 600 mg ascorbic acid groups.
Figure 3
Figure 3
Cumulative frequency distribution curves of minimal luminal diameter (MLD) before percutaneous transluminal angioplasty (PTA), after PTA, and at follow-up (F/U) angiograms stratified by placebo, 300 mg, and 600 mg ascorbic acid groups.
Figure 4
Figure 4
Comparison of clinical restenosis rate, angiographic binary restenosis rate, late loss by minimal luminal diameter (MLD), and late loss by diameter stenosis (DS) between placebo, 300 mg, and 600 mg ascorbic acid groups.

References

    1. Roy-Chaudhury P, Sukhatme VP, Cheung AK. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J Am Soc Nephrol. 2006;17:1112–1127. doi: 10.1681/ASN.2005050615.
    1. Clinical practice guidelines for vascular access. Am J Kidney Dis. 48 (Suppl 1), S176–247 (2006).
    1. Lilly RZ, et al. Predictors of arteriovenous graft patency after radiologic intervention in hemodialysis patients. Am J Kidney Dis. 2001;37:945–953. doi: 10.1016/S0272-6386(05)80010-1.
    1. Neuen BL, et al. Predictors of patency after balloon angioplasty in hemodialysis fistulas: a systematic review. J Vasc Interv Radiol. 2014;25:917–924. doi: 10.1016/j.jvir.2014.02.010.
    1. Haskal ZJ, et al. Stent Graft versus Balloon Angioplasty for Failing Dialysis-Access Grafts. N Engl J Med. 2010;362:494–503. doi: 10.1056/NEJMoa0902045.
    1. Wu CC, et al. Comparison of cutting balloon versus high-pressure balloon angioplasty for resistant venous stenoses of native hemodialysis fistulas. J Vasc Interv Radiol. 2008;19:877–883. doi: 10.1016/j.jvir.2008.02.016.
    1. Misra S, et al. BRAVO I: A pilot study of vascular brachytherapy in polytetrafluoroethylene dialysis access grafts. Kidney Int. 2006;70:2006–2013. doi: 10.1038/sj.ki.5001869.
    1. Kitrou PM, et al. Paclitaxel-coated versus plain balloon angioplasty for dysfunctional arteriovenous fistulae: one-year results of a prospective randomized controlled trial. J Vasc Interv Radiol. 2015;26:348–354. doi: 10.1016/j.jvir.2014.11.003.
    1. Brahmbhatt A, et al. The molecular mechanisms of hemodialysis vascular access failure. Kidney Int. 2016;89:303–316. doi: 10.1016/j.kint.2015.12.019.
    1. Wu CC, et al. Monocyte Chemoattractant Protein-1 Levels and Postangioplasty Restenosis of Arteriovenous Fistulas. Clin J Am Soc Nephrol. 2017;12:113–121. doi: 10.2215/CJN.04030416.
    1. Wasse H, et al. Inflammation, oxidation and venous neointimal hyperplasia precede vascular injury from AVF creation in CKD patients. J Vasc Access. 2012;13:168–174. doi: 10.5301/jva.5000024.
    1. Schneider JE, et al. Probucol decreases neointimal formation in a swine model of coronary artery balloon injury. A possible role for antioxidants in restenosis. Circulation. 1993;88:628–637. doi: 10.1161/01.CIR.88.2.628.
    1. Nunes GL, et al. Combination of vitamins C and E alters the response to coronary balloon injury in the pig. Arterioscler Thromb Vasc Biol. 1995;15:156–165. doi: 10.1161/01.ATV.15.1.156.
    1. Freyschuss A, et al. Antioxidant treatment inhibits the development of intimal thickening after balloon injury of the aorta in hypercholesterolemic rabbits. J Clin Invest. 1993;91:1282–1288. doi: 10.1172/JCI116326.
    1. Tardif JC, et al. Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. Multivitamins and Probucol Study Group. N Engl J Med. 1997;337:365–372. doi: 10.1056/NEJM199708073370601.
    1. Tomoda H, et al. Possible prevention of postangioplasty restenosis by ascorbic acid. Am J Cardiol. 1996;78:1284–1286. doi: 10.1016/S0002-9149(96)00613-3.
    1. Yokoi H, et al. Effectiveness of an antioxidant in preventing restenosis after percutaneous transluminal coronary angioplasty: the Probucol Angioplasty Restenosis Trial. J Am Coll Cardiol. 1997;30:855–862. doi: 10.1016/S0735-1097(97)00270-2.
    1. Morena M, et al. Convective and diffusive losses of vitamin C during haemodiafiltration session: a contributive factor to oxidative stress in haemodialysis patients. Nephrol Dial Transplant. 2002;17:422–427. doi: 10.1093/ndt/17.3.422.
    1. Tarng DC, Liu TY, Huang TP. Protective effect of vitamin C on 8-hydroxy-2′-deoxyguanosine level in peripheral blood lymphocytes of chronic hemodialysis patients. Kidney Int. 2004;66:820–831. doi: 10.1111/j.1523-1755.2004.00809.x.
    1. Zhang K, et al. Cross-over study of influence of oral vitamin C supplementation on inflammatory status in maintenance hemodialysis patients. BMC Nephrol. 2013;14:252. doi: 10.1186/1471-2369-14-252.
    1. Tarng DC, Huang TP. A parallel, comparative study of intravenous iron versus intravenous ascorbic acid for erythropoietin-hyporesponsive anaemia in haemodialysis patients with iron overload. Nephrol Dial Transplant. 1998;13:2867–2872. doi: 10.1093/ndt/13.11.2867.
    1. Sacks D, et al. Reporting Standards for Clinical Evaluation of New Peripheral Arterial Revascularization Devices. J Vasc Interv Radiol. 2003;14:S395–S404. doi: 10.1097/01.RVI.0000094613.61428.a9.
    1. DeMaio SJ, et al. Vitamin E supplementation, plasma lipids and incidence of restenosis after percutaneous transluminal coronary angioplasty (PTCA) J Am Coll Nutr. 1992;11:68–73. doi: 10.1080/07315724.1992.10718198.
    1. Vesely T, et al. Balloon angioplasty versus Viabahn stent graft for treatment of failing or thrombosed prosthetic hemodialysis grafts. J Vasc Surg. 2016;64:1400–1410. doi: 10.1016/j.jvs.2016.04.035.
    1. Beathard GA, et al. Definitions and End Points for Interventional Studies for Arteriovenous Dialysis Access. Clin J Am Soc Nephrol. 2018;13:501–512. doi: 10.2215/CJN.11531116.
    1. Descombes E, Hanck AB, Fellay G. Water soluble vitamins in chronic hemodialysis patients and need for supplementation. Kidney Int. 1993;43:1319–1328. doi: 10.1038/ki.1993.185.
    1. Yang CC, et al. Effects of vitamin C infusion and vitamin E-coated membrane on hemodialysis-induced oxidative stress. Kidney Int. 2006;69:706–714. doi: 10.1038/sj.ki.5000109.
    1. Candan F, Gultekin F, Candan F. Effect of vitamin C and zinc on osmotic fragility and lipid peroxidation in zinc-deficient haemodialysis patients. Cell Biochem Funct. 2002;20:95–98. doi: 10.1002/cbf.947.
    1. Ramos R, Martinez-Castelao A. Lipoperoxidation and hemodialysis. Metabolism. 2008;57:1369–1374. doi: 10.1016/j.metabol.2008.05.004.
    1. Chen WT, et al. Effect of ascorbic acid administration in hemodialysis patients on in vitro oxidative stress parameters: influence of serum ferritin levels. Am J Kidney Dis. 2003;42:158–166. doi: 10.1016/S0272-6386(03)00419-0.
    1. Fumeron C, et al. Effects of oral vitamin C supplementation on oxidative stress and inflammation status in haemodialysis patients. Nephrol Dial Transplant. 2005;20:1874–1879. doi: 10.1093/ndt/gfh928.
    1. Eiselt J, et al. The effect of intravenous iron on oxidative stress in hemodialysis patients at various levels of vitamin C. Blood Purif. 2006;24:531–537. doi: 10.1159/000096474.
    1. Southorn PA, Powis G. Free radicals in medicine. I. Chemical nature and biologic reactions. Mayo Clin Proc. 1998;63:381–389. doi: 10.1016/S0025-6196(12)64861-7.
    1. Wu CC, et al. Radial artery approach for endovascular salvage of occluded autogenous radial-cephalic fistulae. Nephrol Dial Transplant. 2009;24:2497–2502. doi: 10.1093/ndt/gfp087.
    1. Cross JM, et al. Vitamin C improves resistance but not conduit artery endothelial function in patients with chronic renal failure. Kidney Int. 2003;63:1433–1442. doi: 10.1046/j.1523-1755.2003.00852.x.
    1. Rodriguez JA, et al. Vitamins C and E prevent endothelial VEGF and VEGFR-2 overexpression induced by porcine hypercholesterolemic LDL. Cardiovasc Res. 2005;65:665–673. doi: 10.1016/j.cardiores.2004.08.006.
    1. Loke WM, et al. Augmentation of monocyte intracellular ascorbate in vitro protects cells from oxidative damage and inflammatory responses. Biochem Biophys Res Commun. 2006;345:1039–1043. doi: 10.1016/j.bbrc.2006.04.174.
    1. Godfried SL, Deckelbaum LI. Natural antioxidants and restenosis after percutaneous transluminal coronary angioplasty. Am Heart J. 1995;129:203–210. doi: 10.1016/0002-8703(95)90063-2.
    1. Tomson CR, et al. Correction of subclinical ascorbate deficiency in patients receiving dialysis: effects on plasma oxalate, serum cholesterol, and capillary fragility. Clin Chim Acta. 1989;180:255–264. doi: 10.1016/0009-8981(89)90007-7.
    1. Pru C, Eaton J, Kjellstrand C. Vitamin C intoxication and hyperoxalemia in chronic hemodialysis patients. Nephron. 1985;39:112–116. doi: 10.1159/000183353.
    1. Canavese C, et al. Long-term, low-dose, intravenous vitamin C leads to plasma calcium oxalate supersaturation in hemodialysis patients. Am J Kidney Dis. 2005;45:540–549. doi: 10.1053/j.ajkd.2004.10.025.
    1. Padayatty SJ, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140:533–537. doi: 10.7326/0003-4819-140-7-200404060-00010.

Source: PubMed

3
Sottoscrivi