Angiopoietin-Like Protein 8/Leptin Crosstalk Influences Cardiac Mass in Youths With Cardiometabolic Risk: The BCAMS Study

Dongmei Wang, Dan Feng, Yuhan Wang, Peiyu Dong, Yonghui Wang, Ling Zhong, Bo Li, Junling Fu, Xinhua Xiao, John R Speakman, Ming Li, Shan Gao, Dongmei Wang, Dan Feng, Yuhan Wang, Peiyu Dong, Yonghui Wang, Ling Zhong, Bo Li, Junling Fu, Xinhua Xiao, John R Speakman, Ming Li, Shan Gao

Abstract

Objectives: The link between excess adiposity and left ventricular hypertrophy is multifaceted with sparse data among youths. Given that adipokines/hepatokines may influence lipid metabolism in myocardium, we aimed to investigate the relation of the novel hepatokine angiopoietin-like protein 8 (ANGPTL8) and other adipokines with cardiac structure in a cohort of youths and explore to what extent these adipokines/hepatokines affect cardiac structure through lipids.

Methods: A total of 551 participants (aged 15-28 years) from the Beijing Child and Adolescent Metabolic Syndrome Study (BCAMS) cohort underwent echocardiographic measurements plus a blood draw assayed for five adipokines/hepatokines including adiponectin, leptin, retinol binding protein 4, fibroblast growth protein 21 and ANGPTL8.

Results: Both ANGPTL8 (β = -0.68 g/m2.7 per z-score, P= 0.015) and leptin (β = -1.04 g/m2.7 per z-score, P= 0.036) were significantly inversely associated with left ventricular mass index (LVMI) independent of classical risk factors. Total cholesterol and low-density lipoprotein cholesterol significantly mediated the ANGPTL8-LVMI association (proportion: 19.0% and 17.1%, respectively), while the mediation effect of triglyceride on the ANGPTL8-LVMI relationship was strongly moderated by leptin levels, significantly accounting for 20% of the total effect among participants with higher leptin levels. Other adipokines/hepatokines showed no significant association with LVMI after adjustment for body mass index.

Conclusions: Our findings suggest ANGPTL8, particularly interacting with leptin, might have a protective role in cardiac remodeling among youths with risk for metabolic syndrome. Our results offer insights into the pathogenesis of the cardiomyopathy and the potential importance of tissue-tissue crosstalk in these effects.

Trial registration: ClinicalTrials.gov NCT03421444.

Keywords: angiopoietin-like protein 8; left ventricular mass; leptin; lipids; youth.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Wang, Feng, Wang, Dong, Wang, Zhong, Li, Fu, Xiao, Speakman, Li and Gao.

Figures

Figure 1
Figure 1
The model used to evaluate the mediation effects of lipids on ANGPTL8-LVMI association. (A) We hypothesized that ANGPTL8 may indirectly affect left ventricular mass index (LVMI) by regulating lipids metabolism including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG). (B) TC significantly mediated 19.0% of the effect of ANGPTL8 on LVMI. (C) LDL-C significantly mediated 17.1% of the effect of ANGPTL8 on LVMI. (D) The effect that was mediated by TG was 7.7%, although it was not significant. Mediation effects were adjusted for age, sex, body mass index, and systolic blood pressure; per z-score increment of ln-ANGPTL8. β = standardized regression coefficient; β1 = indirect effect 1; β2 = indirect effect 2; βInd = total indirect effect; βDir = direct effect; βTot = total effect; Data based on 5000 bootstrap samples. *P < 0.05; **P < 0.01; ***P < 0.001.
Figure 2
Figure 2
Interaction between ANGPTL8 and leptin on lipids profiles. Liner regression analysis of ANGPTL8 on lipids (TG, TC and LDL-C) stratified by high and low (above/below sex-specific median) levels of leptin. Ln-transformed for triglyceride (TG) and ANGPTL8, per z-score increment of each ln-ANGPTL8. Liner regression models and the P for interaction were shown adjusted for age, sex, body mass index, and systolic blood pressure. β, parameter estimate from linear regression; CI, confidence interval; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol.
Figure 3
Figure 3
The moderated-mediation model used to evaluate the effects of leptin and TG on ANGPTL8-LVMI association. (A) We hypothesized that leptin might modulate the mediation effects of triglyceride (TG) on the association of ANGPTL8 and left ventricular mass index (LVMI) in a moderated mediation template model 7. (B) Moderated effect of leptin for TG is significant, with increment of 0.064 mmol/L TG each additional ln-leptin z-score; the index of moderated mediation, which qualify the relationship between moderator leptin and the size of the indirect effect of ANGPTL8 on LVMI through mediator TG, was significant, with a 0.078 g/m2.7 lower LVMI each additional ln-leptin z-score at a given level of ANGPTL8. Mediation and moderation effects were adjusted for age, sex, body mass index, and systolic blood pressure. β =standardized regression coefficient; β1 = indirect effect 1; β2 = indirect effect 2; βDir = direct effect. Data based on 5000 bootstrap samples. Ln-transformed for TG, ANGPTL8 and leptin, per z-score interaction of each ln-adipokine/hepatokine. *P < 0.05; **P < 0.01.
Figure 4
Figure 4
A proposed mechanistic model for interaction between ANGPTL8 and leptin on LVH through triglyceride. The hepatokine ANGPTL8 might facilitate angiopoietin-like protein 3 (ANGPTL3) to inhibit lipoprotein lipase (LPL) activity for conversion of triglyceride (TG) into fatty acids (FAs) in myocardium, resulting in increased circulating TG and decreased FAs uptake into cardiomyocytes, and coordinating the trafficking of TG to white adipose tissue for storage, and ultimately, inducing higher leptin secretion. Meanwhile, high leptin levels might stimulate β-oxidation of FAs and inhibit de novo lipogenesis in cardiomyocytes to further prevent myocardial TG accumulation and lipid cardiomyopathy, leading to a favorable LVMI. Thereby, the adipokine leptin and the hepatokine ANGPTL8 cooperate together to decrease cardiac TG involved in mechanism of protective effect on cardiac remodeling.

References

    1. Guo Y, Yin X, Wu H, Chai X, Yang X. Trends in Overweight and Obesity Among Children and Adolescents in China From 1991 to 2015: A Meta-Analysis. Int J Environ Res Public Health (2019) 16(23):4656. doi: 10.3390/ijerph16234656
    1. Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. . Childhood Adiposity, Adult Adiposity, and Cardiovascular Risk Factors. N Engl J Med (2011) 365(20):1876–85. doi: 10.1056/NEJMoa1010112
    1. Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward AM. Cardiovascular Disease Risk in Healthy Children and Its Association With Body Mass Index: Systematic Review and Meta-Analysis. Bmj (2012) 345:e4759. doi: 10.1136/bmj.e4759
    1. Armstrong AC, Jacobs DR, Jr, Gidding SS, Colangelo LA, Gjesdal O, Lewis CE, et al. . Framingham Score and LV Mass Predict Events in Young Adults: CARDIA Study. Int J Cardiol (2014) 172(2):350–5. doi: 10.1016/j.ijcard.2014.01.003
    1. Balagopal PB, de Ferranti SD, Cook S, Daniels SR, Gidding SS, Hayman LL, et al. . Nontraditional Risk Factors and Biomarkers for Cardiovascular Disease: Mechanistic, Research, and Clinical Considerations for Youth: A Scientific Statement From the American Heart Association. Circulation (2011) 123(23):2749–69. doi: 10.1161/CIR.0b013e31821c7c64
    1. Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ Res (2016) 118(11):1786–807. doi: 10.1161/circresaha.115.306885
    1. Fasshauer M, Blüher M. Adipokines in Health and Disease. Trends Pharmacol Sci (2015) 36(7):461–70. doi: 10.1016/j.tips.2015.04.014
    1. Neeland IJ, Poirier P, Després JP. Cardiovascular and Metabolic Heterogeneity of Obesity: Clinical Challenges and Implications for Management. Circulation (2018) 137(13):1391–406. doi: 10.1161/circulationaha.117.029617
    1. Han MS, Perry RJ, Camporez JP, Scherer PE, Shulman GI, Gao G, et al. . A Feed-Forward Regulatory Loop in Adipose Tissue Promotes Signaling by the Hepatokine FGF21. Genes Dev (2021) 35(1-2):133–46. doi: 10.1101/gad.344556.120
    1. Allison MA, Bluemke DA, McClelland R, Cushman M, Criqui MH, Polak JF, et al. . Relation of Leptin to Left Ventricular Hypertrophy (From the Multi-Ethnic Study of Atherosclerosis). Am J Cardiol (2013) 112(5):726–30. doi: 10.1016/j.amjcard.2013.04.053
    1. von Jeinsen B, Short MI, Xanthakis V, Carneiro H, Cheng S, Mitchell GF, et al. . Association of Circulating Adipokines With Echocardiographic Measures of Cardiac Structure and Function in a Community-Based Cohort. J Am Heart Assoc (2018) 7(13):e008997. doi: 10.1161/jaha.118.008997
    1. Unger RH. Hyperleptinemia: Protecting the Heart From Lipid Overload. Hypertension (2005) 45(6):1031–4. doi: 10.1161/01.Hyp.0000165683.09053.02
    1. Hall ME, Maready MW, Hall JE, Stec DE. Rescue of Cardiac Leptin Receptors in Db/Db Mice Prevents Myocardial Triglyceride Accumulation. Am J Physiol Endocrinol Metab (2014) 307(3):E316–25. doi: 10.1152/ajpendo.00005.2014
    1. Zhao S, Kusminski CM, Scherer PE. Adiponectin, Leptin and Cardiovascular Disorders. Circ Res (2021) 128(1):136–49. doi: 10.1161/circresaha.120.314458
    1. Kozakova M, Muscelli E, Flyvbjerg A, Frystyk J, Morizzo C, Palombo C, et al. . Adiponectin and Left Ventricular Structure and Function in Healthy Adults. J Clin Endocrinol Metab (2008) 93(7):2811–8. doi: 10.1210/jc.2007-2580
    1. Mitsuhashi H, Yatsuya H, Tamakoshi K, Matsushita K, Otsuka R, Wada K, et al. . Adiponectin Level and Left Ventricular Hypertrophy in Japanese Men. Hypertension (2007) 49(6):1448–54. doi: 10.1161/hypertensionaha.106.079509
    1. Fontes-Carvalho R, Pimenta J, Bettencourt P, Leite-Moreira A, Azevedo A. Association Between Plasma Leptin and Adiponectin Levels and Diastolic Function in the General Population. Expert Opin Ther Targets (2015) 19(10):1283–91. doi: 10.1517/14728222.2015.1019468
    1. Gao W, Wang H, Zhang L, Cao Y, Bao JZ, Liu ZX, et al. . Retinol-Binding Protein 4 Induces Cardiomyocyte Hypertrophy by Activating TLR4/MyD88 Pathway. Endocrinology (2016) 157(6):2282–93. doi: 10.1210/en.2015-2022
    1. Planavila A, Redondo I, Hondares E, Vinciguerra M, Munts C, Iglesias R, et al. . Fibroblast Growth Factor 21 Protects Against Cardiac Hypertrophy in Mice. Nat Commun (2013) 4:2019. doi: 10.1038/ncomms3019
    1. Chou RH, Huang PH, Hsu CY, Chang CC, Leu HB, Huang CC, et al. . Circulating Fibroblast Growth Factor 21 Is Associated With Diastolic Dysfunction in Heart Failure Patients With Preserved Ejection Fraction. Sci Rep (2016) 6:33953. doi: 10.1038/srep33953
    1. Shen Y, Zhang X, Pan X, Xu Y, Xiong Q, Lu Z, et al. . Contribution of Serum FGF21 Level to the Identification of Left Ventricular Systolic Dysfunction and Cardiac Death. Cardiovasc Diabetol (2017) 16(1):106. doi: 10.1186/s12933-017-0588-5
    1. Luo M, Peng D. ANGPTL8: An Important Regulator in Metabolic Disorders. Front Endocrinol (Lausanne) (2018) 9:169. doi: 10.3389/fendo.2018.00169
    1. Gusarova V, Alexa CA, Na E, Stevis PE, Xin Y, Bonner-Weir S, et al. . ANGPTL8/betatrophin Does Not Control Pancreatic Beta Cell Expansion. Cell (2014) 159(3):691–6. doi: 10.1016/j.cell.2014.09.027
    1. Kovrov O, Kristensen KK, Larsson E, Ploug M, Olivecrona G. On the Mechanism of Angiopoietin-Like Protein 8 for Control of Lipoprotein Lipase Activity. J Lipid Res (2019) 60(4):783–93. doi: 10.1194/jlr.M088807
    1. Chen YQ, Pottanat TG, Siegel RW, Ehsani M, Qian YW, Zhen EY, et al. . Angiopoietin-Like Protein 8 Differentially Regulates ANGPTL3 and ANGPTL4 During Postprandial Partitioning of Fatty Acids. J Lipid Res (2020) 61(8):1203–20. doi: 10.1194/jlr.RA120000781
    1. Fu Z, Abou-Samra AB, Zhang R. A Lipasin/Angptl8 Monoclonal Antibody Lowers Mouse Serum Triglycerides Involving Increased Postprandial Activity of the Cardiac Lipoprotein Lipase. Sci Rep (2015) 5:18502. doi: 10.1038/srep18502
    1. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. . Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update From the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2015. Mar;16(3):233–70. doi: 10.1093/ehjci/jev014
    1. Fu J, Hou C, Li L, Feng D, Li G, Li M, et al. . Vitamin D Modifies the Associations Between Circulating Betatrophin and Cardiometabolic Risk Factors Among Youths at Risk for Metabolic Syndrome. Cardiovasc Diabetol (2016) 15(1):142. doi: 10.1186/s12933-016-0461-y
    1. Li G, Feng D, Wang Y, Fu J, Han L, Li L, et al. . Loss of Cardio-Protective Effects at the CDH13 Locus Due to Gene-Sleep Interaction: The BCAMS Study. EBioMedicine (2018) 32:164–71. doi: 10.1016/j.ebiom.2018.05.033
    1. Li Q, Lu Y, Sun L, Yan J, Yan X, Fang L, et al. . Plasma Adiponectin Levels in Relation to Prognosis in Patients With Angiographic Coronary Artery Disease. Metabolism (2012) 61(12):1803–8. doi: 10.1016/j.metabol.2012.06.001
    1. Wang Q, Yin J, Xu L, Cheng H, Zhao X, Xiang H, et al. . Prevalence of Metabolic Syndrome in a Cohort of Chinese Schoolchildren: Comparison of Two Definitions and Assessment of Adipokines as Components by Factor Analysis. BMC Public Health (2013) 13:249. doi: 10.1186/1471-2458-13-249
    1. Li M, Yin JH, Zhang K, Wu CY. A Highly Sensitive Enzyme-Linked Immunosorbent Assay for Measurement of Leptin Secretion in Human Adipocytes. Zhonghua Yi Xue Za Zhi (2008) 88(46):3293–7. doi: 10.3321/j.issn:0376-2491.2008.46.015
    1. Li G, Feng D, Qu X, Fu J, Wang Y, Li L, et al. . Role of Adipokines FGF21, Leptin and Adiponectin in Self-Concept of Youths With Obesity. Eur Neuropsychopharmacol (2018) 28(8):892–902. doi: 10.1016/j.euroneuro.2018.05.015
    1. Li G, Esangbedo IC, Xu L, Fu J, Li L, Feng D, et al. . Childhood Retinol-Binding Protein 4 (RBP4) Levels Predicting the 10-Year Risk of Insulin Resistance and Metabolic Syndrome: The BCAMS Study. Cardiovasc Diabetol (2018) 17(1):69. doi: 10.1186/s12933-018-0707-y
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function From Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia (1985) 28(7):412–9. doi: 10.1007/bf00280883
    1. Matsuda M, DeFronzo RA. Insulin Sensitivity Indices Obtained From Oral Glucose Tolerance Testing: Comparison With the Euglycemic Insulin Clamp. Diabetes Care (1999) 22(9):1462–70. doi: 10.2337/diacare.22.9.1462
    1. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. . Echocardiographic Assessment of Left Ventricular Hypertrophy: Comparison to Necropsy Findings. Am J Cardiol (1986) 57(6):450–8. doi: 10.1016/0002-9149(86)90771-x
    1. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-Specific Reference Intervals for Indexed Left Ventricular Mass in Children. J Am Soc Echocardiogr (2009) 22(6):709–14. doi: 10.1016/j.echo.2009.03.003
    1. Hayes AF. Partial, Conditional, and Moderated Moderated Mediation: Quantification, Inference, and Interpretation. Communication Monogr (2018) 1(85):4–40. doi: 10.1080/03637751.2017.1352100
    1. Zhang T, Li S, Bazzano L, He J, Whelton P, Chen W. Trajectories of Childhood Blood Pressure and Adult Left Ventricular Hypertrophy: The Bogalusa Heart Study. Hypertension (2018) 72(1):93–101. doi: 10.1161/hypertensionaha.118.10975
    1. Pulinilkunnil T, Kienesberger PC, Nagendran J, Sharma N, Young ME, Dyck JR. Cardiac-Specific Adipose Triglyceride Lipase Overexpression Protects From Cardiac Steatosis and Dilated Cardiomyopathy Following Diet-Induced Obesity. Int J Obes (Lond) (2014) 38(2):205–15. doi: 10.1038/ijo.2013.103
    1. Alpert MA, Karthikeyan K, Abdullah O, Ghadban R. Obesity and Cardiac Remodeling in Adults: Mechanisms and Clinical Implications. Prog Cardiovasc Dis (2018) 61(2):114–23. doi: 10.1016/j.pcad.2018.07.012
    1. Ren G, Kim JY, Smas CM. Identification of RIFL, a Novel Adipocyte-Enriched Insulin Target Gene With a Role in Lipid Metabolism. Am J Physiol Endocrinol Metab (2012) 303(3):E334–51. doi: 10.1152/ajpendo.00084.2012
    1. Zhang R. Lipasin, a Novel Nutritionally-Regulated Liver-Enriched Factor That Regulates Serum Triglyceride Levels. Biochem Biophys Res Commun (2012) 424(4):786–92. doi: 10.1016/j.bbrc.2012.07.038
    1. Mead JR, Irvine SA, Ramji DP. Lipoprotein Lipase: Structure, Function, Regulation, and Role in Disease. J Mol Med (Berl) (2002) 80(12):753–69. doi: 10.1007/s00109-002-0384-9
    1. Zhang R. The ANGPTL3-4-8 Model, a Molecular Mechanism for Triglyceride Trafficking. Open Biol (2016) 6(4):150272. doi: 10.1098/rsob.150272
    1. Oldoni F, Cheng H, Banfi S, Gusarova V, Cohen JC, Hobbs HH. ANGPTL8 Has Both Endocrine and Autocrine Effects on Substrate Utilization. JCI Insight (2020) 5(17):e138777. doi: 10.1172/jci.insight.138777
    1. Gaudet D, Gipe DA, Pordy R, Ahmad Z, Cuchel M, Shah PK, et al. . ANGPTL3 Inhibition in Homozygous Familial Hypercholesterolemia. N Engl J Med (2017) 377(3):296–7. doi: 10.1056/NEJMc1705994
    1. Wu L, Soundarapandian MM, Castoreno AB, Millar JS, Rader DJ. LDL-Cholesterol Reduction by ANGPTL3 Inhibition in Mice Is Dependent on Endothelial Lipase. Circ Res (2020) 127(8):1112–4. doi: 10.1161/circresaha.120.317128
    1. Luo M, Zhang Z, Peng Y, Wang S, Peng D. The Negative Effect of ANGPTL8 on HDL-Mediated Cholesterol Efflux Capacity. Cardiovasc Diabetol (2018) 17(1):142. doi: 10.1186/s12933-018-0785-x
    1. Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, et al. . HDL Cholesterol Efflux Capacity and Incident Cardiovascular Events. N Engl J Med (2014) 371(25):2383–93. doi: 10.1056/NEJMoa1409065
    1. Saleheen D, Scott R, Javad S, Zhao W, Rodrigues A, Picataggi A, et al. . Association of HDL Cholesterol Efflux Capacity With Incident Coronary Heart Disease Events: A Prospective Case-Control Study. Lancet Diabetes Endocrinol (2015) 3(7):507–13. doi: 10.1016/s2213-8587(15)00126-6
    1. Leiherer A, Ebner J, Muendlein A, Brandtner EM, Zach C, Geiger K, et al. . High Betatrophin in Coronary Patients Protects From Cardiovascular Events. Atherosclerosis (2020) 293:62–8. doi: 10.1016/j.atherosclerosis.2019.11.011
    1. Antonopoulos AS, Antoniades C, Tousoulis D. Unravelling the “Adipokine Paradox”: When the Classic Proatherogenic Adipokine Leptin Is Deemed the Beneficial One. Int J Cardiol (2015) 197:125–7. doi: 10.1016/j.ijcard.2015.06.044
    1. Lieb W, Sullivan LM, Harris TB, Roubenoff R, Benjamin EJ, Levy D, et al. . Plasma Leptin Levels and Incidence of Heart Failure, Cardiovascular Disease, and Total Mortality in Elderly Individuals. Diabetes Care (2009) 32(4):612–6. doi: 10.2337/dc08-1596
    1. Wannamethee SG, Shaper AG, Whincup PH, Lennon L, Sattar N. Obesity and Risk of Incident Heart Failure in Older Men With and Without Pre-Existing Coronary Heart Disease: Does Leptin Have a Role? J Am Coll Cardiol (2011) 58(18):1870–7. doi: 10.1016/j.jacc.2011.06.057
    1. Perego L, Pizzocri P, Corradi D, Maisano F, Paganelli M, Fiorina P, et al. . Circulating Leptin Correlates With Left Ventricular Mass in Morbid (Grade III) Obesity Before and After Weight Loss Induced by Bariatric Surgery: A Potential Role for Leptin in Mediating Human Left Ventricular Hypertrophy. J Clin Endocrinol Metab (2005) 90(7):4087–93. doi: 10.1210/jc.2004-1963
    1. Stefan N. Causes, Consequences, and Treatment of Metabolically Unhealthy Fat Distribution. Lancet Diabetes Endocrinol (2020) 8(7):616–27. doi: 10.1016/s2213-8587(20)30110-8
    1. Poetsch MS, Strano A, Guan K. Role of Leptin in Cardiovascular Diseases. Front Endocrinol (Lausanne) (2020) 11:354. doi: 10.3389/fendo.2020.00354
    1. Piñeiro R, Iglesias MJ, Gallego R, Raghay K, Eiras S, Rubio J, et al. . Adiponectin Is Synthesized and Secreted by Human and Murine Cardiomyocytes. FEBS Lett (2005) 579(23):5163–9. doi: 10.1016/j.febslet.2005.07.098
    1. Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin Expression From Human Adipose Tissue: Relation to Obesity, Insulin Resistance, and Tumor Necrosis Factor-Alpha Expression. Diabetes (2003) 52(7):1779–85. doi: 10.2337/diabetes.52.7.1779
    1. Geng L, Lam KSL, Xu A. The Therapeutic Potential of FGF21 in Metabolic Diseases: From Bench to Clinic. Nat Rev Endocrinol (2020) 16(11):654–67. doi: 10.1038/s41574-020-0386-0
    1. Stefan N, Schick F, Häring HU. Ectopic Fat in Insulin Resistance, Dyslipidemia, and Cardiometabolic Disease. N Engl J Med (2014) 371(23):2236–7. doi: 10.1056/NEJMc1412427
    1. Stefan N, Häring HU. The Role of Hepatokines in Metabolism. Nat Rev Endocrinol (2013) 9(3):144–52. doi: 10.1038/nrendo.2012.258

Source: PubMed

3
Sottoscrivi