Dysglycemia associations with adipose tissue among HIV-infected patients after 2 years of antiretroviral therapy in Mwanza: a follow-up cross-sectional study

George PrayGod, John Changalucha, Saidi Kapiga, Robert Peck, Jim Todd, Suzanne Filteau, George PrayGod, John Changalucha, Saidi Kapiga, Robert Peck, Jim Todd, Suzanne Filteau

Abstract

Background: Data on the burden of dysglycemia among HIV-infected patients on antiretroviral therapy (ART) in Africa are limited. We determined the prevalence of pre-diabetes and diabetes among HIV-infected patients who started ART when malnourished 2 to 3 years previously and investigated the association of dysglycemia with body composition.

Methods: Malnourished (body mass index (BMI) < 18.5 kg/m2) HIV-infected patients who were enrolled in the Nutritional Support for Africans Starting Antiretroviral Therapy (NUSTART) trial from 2011 to 2013 were followed-up from March to August 2015. Anthropometric, fat mass and fat-free mass by bioelectrical impedance, and C-reactive protein (CRP) data were collected at baseline and follow-up. At follow-up, we defined fasting glucose of 6.1-6.9 mmol/L as impaired fasting glucose (IFG) and 2-h oral glucose tolerance test (OGTT) glucose of ≥7.8 to <11.1 mmol/L as impaired glucose tolerance (IGT). Both of these were considered pre-diabetes. Fasting glucose of ≥7.0 mmol/L or impaired glucose tolerance of ≥11.1 mmol/L was defined as diabetes mellitus. The relation of pre-diabetes and diabetes with body composition was assessed using logistic regression.

Results: Two hundred seventy-three (57%) of 478 patients who were alive at trial conclusion were followed-up. The mean age was 41.5 (SD 9.8) years and 65.2% (178) were females. The mean follow-up BMI was 19.9 (SD 2.8) kg/m2, 12 (4.4%) were either overweight or obese, and 61 (22.3%) patients had pre-diabetes or diabetes. In multiple regression, upper tertiles of baseline hip circumference (OR: 0.41, 95% CI: 0.2, 0.8) and fat mass index (OR: 0.20 (0.1, 0.5), and upper tertiles of follow-up waist circumference (OR: 0.22 (0.1, 0.5), BMI (OR: 0.32 (0.1, 0.7), fat mass index (OR: 0.19 (0.1, 0.5) and the middle tertile of follow-up fat-free mass (OR: 0.36, 95% CI: 0.1, 0.8) were associated with lower risk of pre-diabetes and diabetes (P < 0.05 for all). Baseline and follow-up CRP were not predictors.

Conclusions: Low rather than high measures of adipose tissue were associated with increased risk of pre-diabetes and diabetes. Additional studies are needed to further investigate the role of body composition and control of glucose metabolism in the pathogenesis of diabetes among persons living with HIV in Africa.

Keywords: Africa; Anthropometry; Antiretroviral therapy; Body composition; Diabetes; HIV; Pre-diabetes.

Figures

Fig. 1
Fig. 1
Participant flow chart

References

    1. Mbanya JC, Motala AA, Sobngwi E, Assah FK, Enoru ST. Diabetes in sub-Saharan Africa. Lancet. 2010;375(9733):2254–66. doi: 10.1016/S0140-6736(10)60550-8.
    1. Young F, Critchley JA, Johnstone LK, Unwin NC. A review of co-morbidity between infectious and chronic disease in Sub Saharan Africa: TB and diabetes mellitus, HIV and metabolic syndrome, and the impact of globalization. Global Health. 2009;5:9. doi: 10.1186/1744-8603-5-9.
    1. Tien PC, Schneider MF, Cole SR, Levine AM, Cohen M, DeHovitz J, et al. Antiretroviral therapy exposure and incidence of diabetes mellitus in the women’s interagency HIV study. Aids. 2007;21(13):1739–45. doi: 10.1097/QAD.0b013e32827038d0.
    1. Brown TT, Cole SR, Li X, Kingsley LA, Palella FJ, Riddler SA, et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med. 2005;165(10):1179–84. doi: 10.1001/archinte.165.10.1179.
    1. Florescu D, Kotler DP. Insulin resistance, glucose intolerance and diabetes mellitus in HIV-infected patients. Antivir Ther. 2007;12(2):149–62.
    1. Ali MK, Magee MJ, Dave JA, Ofotokun I, Tungsiripat M, Jones TK, et al. HIV and metabolic, body, and bone disorders: what we know from low- and middle-income countries. J Acquir Immune Defic Syndr. 2014;67(Suppl 1):S27–39. doi: 10.1097/QAI.0000000000000256.
    1. Brown TT, Tassiopoulos K, Bosch RJ, Shikuma C, McComsey GA. Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy. Diabetes Care. 2010;33(10):2244–9. doi: 10.2337/dc10-0633.
    1. Podell BK, Ackart DF, Kirk NM, Eck SP, Bell C, Basaraba RJ. Non-diabetic hyperglycemia exacerbates disease severity in Mycobacterium tuberculosis infected guinea pigs. PloS one. 2012;7(10):e46824. doi: 10.1371/journal.pone.0046824.
    1. Liu E, Spiegelman D, Semu H, Hawkins C, Chalamilla G, Aveika A, et al. Nutritional status and mortality among HIV-infected patients receiving antiretroviral therapy in Tanzania. J Infect Dis. 2011;204(2):282–90. doi: 10.1093/infdis/jir246.
    1. Schwenk A, Hodgson L, Wright A, Ward LC, Rayner CF, Grubnic S, Griffin GE, Macallan DC. Nutrient partitioning during treatment of tuberculosis: gain in body fat mass but not in protein mass. Am J Clin Nutr. 2004;79(6):1006–12.
    1. Streat SJ, Beddoe AH, Hill GL. Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma. 1987;27(3):262–6. doi: 10.1097/00005373-198703000-00006.
    1. Kavishe B, Biraro S, Baisley K, Vanobberghen F, Kapiga S, Munderi P, et al. High prevalence of hypertension and of risk factors for non-communicable diseases (NCDs): a population based cross-sectional survey of NCDS and HIV infection in Northwestern Tanzania and Southern Uganda. BMC medicine. 2015;13:126. doi: 10.1186/s12916-015-0357-9.
    1. Maganga E, Smart LR, Kalluvya S, Kataraihya JB, Saleh AM, Obeid L, et al. Glucose metabolism disorders, HIV and antiretroviral therapy among Tanzanian Adults. PloS one. 2015;10(8):e0134410. doi: 10.1371/journal.pone.0134410.
    1. Dillon DG, Gurdasani D, Riha J, Ekoru K, Asiki G, Mayanja BN, et al. Association of HIV and ART with cardiometabolic traits in sub-Saharan Africa: a systematic review and meta-analysis. Int J Epidemiol. 2013;42(6):1754–71. doi: 10.1093/ije/dyt198.
    1. Filteau S, PrayGod G, Kasonka L, Woodd S, Rehman AM, Chisenga M, et al. Effects on mortality of a nutritional intervention for malnourished HIV-infected adults referred for antiretroviral therapy: a randomised controlled trial. BMC medicine. 2015;13:17. doi: 10.1186/s12916-014-0253-8.
    1. PrayGod G, Blevins M, Woodd S, Rehman AM, Jeremiah K, Friis H, et al. A longitudinal study of systemic inflammation and recovery of lean body mass among malnourished HIV-infected adults starting antiretroviral therapy in Tanzania and Zambia. Eur J Clin Nutr. 2016;70(4):499–504.
    1. World Health Organization . WHO steps manual. Geneva: World Health Organization; 2008.
    1. WHO/IDF . Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. Geneva: WHO/IDF; 2006.
    1. Edelstein SL, Knowler WC, Bain RP, Andres R, Barrett-Connor EL, Dowse GK, et al. Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes. 1997;46(4):701–10. doi: 10.2337/diab.46.4.701.
    1. O'Brien C, Young AJ, Sawka MN. Bioelectrical impedance to estimate changes in hydration status. Int J Sports Med. 2002;23(5):361–6. doi: 10.1055/s-2002-33145.
    1. Flakoll PJ, Kent P, Neyra R, Levenhagen D, Chen KY, Ikizler TA. Bioelectrical impedance vs air displacement plethysmography and dual-energy X-ray absorptiometry to determine body composition in patients with end-stage renal disease. JPEN J Parenter Enteral Nutr. 2004;28(1):13–21. doi: 10.1177/014860710402800113.
    1. Wibaek R, Kaestel P, Skov SR, Christensen DL, Girma T, Wells JC, et al. Calibration of bioelectrical impedance analysis for body composition assessment in Ethiopian infants using air-displacement plethysmography. Eur J Clin Nutr. 2015;69(10):1099–104.
    1. Kyle UG, Schutz Y, Dupertuis YM, Pichard C. Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index. Nutrition (Burbank Los Angeles County, Calif) 2003;19(7–8):597–604. doi: 10.1016/S0899-9007(03)00061-3.
    1. Kirkwood BR, Sterne JAC. Essential medical statistics. Second 2004.
    1. Barr EL, Zimmet PZ, Welborn TA, Jolley D, Magliano DJ, Dunstan DW, et al. Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian diabetes, obesity, and lifestyle study (AusDiab) Circulation. 2007;116(2):151–7. doi: 10.1161/CIRCULATIONAHA.106.685628.
    1. Tominaga M. Diagnostic criteria for diabetes mellitus. Rinsho Byori. 1999;47(10):901–8.
    1. Kim HK, Kim CH, Kim EH, Bae SJ, Choe J, Park JY, et al. Impaired fasting glucose and risk of cardiovascular disease in Korean men and women: the Korean heart study. Diabetes Care. 2013;36(2):328–35. doi: 10.2337/dc12-0587.
    1. Anand SS, Dagenais GR, Mohan V, Diaz R, Probstfield J, Freeman R, et al. Glucose levels are associated with cardiovascular disease and death in an international cohort of normal glycaemic and dysglycaemic men and women: the EpiDREAM cohort study. Eur J Prev Cardiol. 2012;19(4):755–64. doi: 10.1177/1741826711409327.
    1. Nichols GA, Hillier TA, Brown JB. Progression from newly acquired impaired fasting glusose to type 2 diabetes. Diabetes Care. 2007;30(2):228–33. doi: 10.2337/dc06-1392.
    1. Mulligan K, Tai VW, Schambelan M. Cross-sectional and longitudinal evaluation of body composition in men with HIV infection. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;15(1):43–8. doi: 10.1097/00042560-199705010-00007.
    1. Swanson B, Hershow RC, Sha BE, Benson CA, Cohen M, Gunfeld C. Body composition in HIV-infected women. Nutrition. 2000;16(11–12):1064–8. doi: 10.1016/S0899-9007(00)00432-9.
    1. Fekadu S, Yigzaw M, Alemu S, Dessie A, Fieldhouse H, Girma T, et al. Insulin-requiring diabetes in Ethiopia: associations with poverty, early undernutrition and anthropometric disproportion. Eur J Clin Nutr. 2010;64(10):1192–8. doi: 10.1038/ejcn.2010.143.
    1. Gill GV, Tekle A, Reja A, Wile D, English PJ, Diver M, et al. Immunological and C-peptide studies of patients with diabetes in northern Ethiopia: existence of an unusual subgroup possibly related to malnutrition. Diabetologia. 2011;54(1):51–7. doi: 10.1007/s00125-010-1921-7.
    1. Faurholt-Jepsen D, Range N, Praygod G, Jeremiah K, Faurholt-Jepsen M, Aabye MG, et al. The association between conventional risk factors and diabetes is weak among urban Tanzanians. Diabetes Care. 2014;37(1):e5–6. doi: 10.2337/dc13-1905.
    1. Taksande A, Taksande B, Kumar A, Vilhekar K. Malnutrition-related diabetes mellitus. J MGIMS. 2008;13(ii):19––24.
    1. Kanat M, Mari A, Norton L, Winnier D, DeFronzo RA, Jenkinson C, et al. Distinct beta-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes. 2012;61(2):447–53. doi: 10.2337/db11-0995.
    1. Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006;29(5):1130–9. doi: 10.2337/dc05-2179.
    1. Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007;30(3):753–9. doi: 10.2337/dc07-9920.
    1. Berhane T, Yami A, Alemseged F, Yemane T, Hamza L, Kassim M, et al. Prevalence of lipodystrophy and metabolic syndrome among HIV positive individuals on highly active anti-retroviral treatment in Jimma, South West Ethiopia. Pan Afr Med J. 2012;13:43.
    1. Julius H, Basu D, Ricci E, Wing J, Basu JK, Pocaterra D, et al. The burden of metabolic diseases amongst HIV positive patients on HAART attending The Johannesburg Hospital. Curr HIV Res. 2011;9(4):247–52. doi: 10.2174/157016211796320360.
    1. Manuthu EM, Joshi MD, Lule GN, Karari E. Prevalence of dyslipidemia and dysglycaemia in HIV infected patients. East Afr Med J. 2008;85(1):10–7. doi: 10.4314/eamj.v85i1.9600.
    1. Faurholt-Jepsen D, Range N, PrayGod G, Jeremiah K, Faurholt-Jepsen M, Aabye MG, et al. Diabetes is a strong predictor of mortality during tuberculosis treatment: a prospective cohort study among tuberculosis patients from Mwanza, Tanzania. Trop Med Int Health. 2013;18(7):822–9. doi: 10.1111/tmi.12120.
    1. World Health Organization . Global recommendations on physical activity for health. 2010.
    1. He FJ, Nowson CA, Lucas M, MacGregor GA. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies. J Hum Hypertens. 2007;21(9):717–28. doi: 10.1038/sj.jhh.1002212.
    1. He FJ, Nowson CA, MacGregor GA. Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet. 2006;367(9507):320–6. doi: 10.1016/S0140-6736(06)68069-0.
    1. Ayah R, Joshi MD, Wanjiru R, Njau EK, Otieno CF, Njeru EK, et al. A population-based survey of prevalence of diabetes and correlates in an urban slum community in Nairobi, Kenya. BMC Public Health. 2013;13:371. doi: 10.1186/1471-2458-13-371.
    1. Moore DM, Awor A, Downing R, Kaplan J, Montaner JS, Hancock J, et al. CD4+ T-cell count monitoring does not accurately identify HIV-infected adults with virologic failure receiving antiretroviral therapy. J Acquir Immune Defic Syndr. 2008;49(5):477–84. doi: 10.1097/QAI.0b013e318186eb18.

Source: PubMed

3
Sottoscrivi