Differential Relationship between Microstructural Integrity in White Matter Tracts and Motor Recovery following Stroke Based on Brain-Derived Neurotrophic Factor Genotype

Eunhee Park, Jungsoo Lee, Won Hyuk Chang, Ahee Lee, Friedhelm C Hummel, Yun-Hee Kim, Eunhee Park, Jungsoo Lee, Won Hyuk Chang, Ahee Lee, Friedhelm C Hummel, Yun-Hee Kim

Abstract

Objective: The relationship between white matter integrity and the brain-derived neurotrophic factor (BDNF) genotype and its effects on motor recovery after stroke are poorly understood. We investigated the values of fractional anisotropy (FA) in the corticospinal tract (CST), the intrahemispheric connection from the primary motor cortex to the ventral premotor cortex (M1PMv), and the interhemispheric connection via the corpus callosum (CC) in patients with the BDNF genotype from the acute to the subacute phase after stroke.

Methods: The Fugl-Meyer assessment, upper extremity (FMA-UE), and tract-related FA were assessed at 2 weeks (T1) and 3 months (T2) after stroke using diffusion tensor imaging (DTI). Fifty-eight patients diagnosed with ischemic stroke were classified according to the BDNF genotype into a Val (valine homozygotes) or Met (methionine heterozygotes and homozygotes) group.

Results: The Val group exhibited a larger reduction of FA values in the ipsilesional M1PMv than the Met group from T1 to T2. The FMA-UE at T2 was negatively correlated with FA of the contralesional M1PMv at T2 in the Val group but was positively correlated with FA of the ipsilesional CST and CC at T2 in the Met group.

Conclusions: The integrity of the intra- and interhemispheric connections might be related to different processes of motor recovery dependent on the BDNF genotype. Thus, the BDNF genotype may need to be considered as a factor influencing neuroplasticity and functional recovery in patients with stroke. This trial is registered with http://www.clinicaltrials.gov: NCT03647787.

Conflict of interest statement

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Copyright © 2020 Eunhee Park et al.

Figures

Figure 1
Figure 1
Template tract. Three template tracts were conducted by probabilistic tractography in 26 healthy subjects. The longitudinal tracts are shown in (a); the blue template is the corticospinal tract. The corticocortical connections are shown in (b); the pink template is intrahemispheric corticocortical connections from the primary motor cortex to the ventral premotor cortex, and the green template is interhemispheric corticocortical connections from both primary motor cortices.
Figure 2
Figure 2
Individual lesion masks were drawn and then spatially normalized to the Montreal Neurological Institute (MNI) space. The decision to flip all left lesions to the right was arbitrary. The lesion masks of (a) valine (Val) homozygotes of the BDNF genotype and (b) methionine (Met) allele carriers of the BDNF genotype superimposed onto MNI space. Colored bars represent levels of overlap in each lesion. Red indicates infrequent overlap, while white indicates frequent overlap.
Figure 3
Figure 3
The absolute values of fractional anisotropy (FA) in the (a) ipsilesional, the (b) contralesional, and the (c) interhemispheric motor-related tracts between two weeks and three months after stroke in each BDNF genotype. CC: corpus callosum; CST: corticospinal tract; M1PMv: intrahemispheric corticocortical connection from the primary motor cortex to the ventral premotor cortex; Met group: BDNF methionine (Met) allele carriers; T1: two weeks after stroke onset; T2: three months after stroke onset; Val group: BDNF valine (Val) homozygotes. ∗P < 0.05.
Figure 4
Figure 4
Correlations between upper limb motor function at three months after stroke and tract-related fractional anisotropy at three months after stroke in (a) valine (Val) homozygotes and (b) methionine (Met) allele carriers of BDNF genotype. “r” represents the partial correlation coefficient. Asterisks indicate significant differences (∗P < 0.05). CC: corpus callosum; CST: corticospinal tract; FA: fractional anisotropy; FMA-UE: Fugl-Meyer assessment, upper extremity; M1PMv: intrahemispheric corticocortical connection from the primary motor cortex to the ventral premotor cortex; r: partial correlation coefficient; T1: two weeks after stroke onset; T2: three months after stroke onset.

References

    1. Coupar F., Pollock A., Rowe P., Weir C., Langhorne P. Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clinical Rehabilitation. 2012;26(4):291–313. doi: 10.1177/0269215511420305.
    1. Langhorne P., Coupar F., Pollock A. Motor recovery after stroke: a systematic review. The Lancet Neurology. 2009;8(8):741–754. doi: 10.1016/S1474-4422(09)70150-4.
    1. Stinear C. M. Prediction of motor recovery after stroke: advances in biomarkers. The Lancet Neurology. 2017;16(10):826–836. doi: 10.1016/S1474-4422(17)30283-1.
    1. Byblow W. D., Stinear C. M., Barber P. A., Petoe M. A., Ackerley S. J. Proportional recovery after stroke depends on corticomotor integrity. Annals of Neurology. 2015;78(6):848–859. doi: 10.1002/ana.24472.
    1. Chang W. H., Park E., Lee J., Lee A., Kim Y.-H. Association between brain-derived neurotrophic factor genotype and upper extremity motor outcome after stroke. Stroke. 2017;48(6):1457–1462. doi: 10.1161/STROKEAHA.116.015264.
    1. Stinear C. M., Barber P. A., Petoe M., Anwar S., Byblow W. D. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain. 2012;135(8):2527–2535. doi: 10.1093/brain/aws146.
    1. Thomalla G., Glauche V., Koch M. A., Beaulieu C., Weiller C., Rother J. Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. NeuroImage. 2004;22(4):1767–1774. doi: 10.1016/j.neuroimage.2004.03.041.
    1. Puig J., Blasco G., Daunis-I-Estadella J., et al. Decreased corticospinal tract fractional anisotropy predicts long-term motor outcome after stroke. Stroke. 2013;44(7):2016–2018. doi: 10.1161/STROKEAHA.111.000382.
    1. Groisser B. N., Copen W. A., Singhal A. B., Hirai K. K., Schaechter J. D. Corticospinal tract diffusion abnormalities early after stroke predict motor outcome. Neurorehabilitation and Neural Repair. 2014;28(8):751–760. doi: 10.1177/1545968314521896.
    1. Thiel A., Vahdat S. Structural and resting-state brain connectivity of motor networks after stroke. Stroke. 2015;46(1):296–301. doi: 10.1161/STROKEAHA.114.006307.
    1. Lee J., Park E., Lee A., Chang W. H., Kim D. S., Kim Y. H. Recovery-related indicators of motor network plasticity according to impairment severity after stroke. European Journal of Neurology. 2017;24(10):1290–1299. doi: 10.1111/ene.13377.
    1. Favre I., Zeffiro T. A., Detante O., Krainik A., Hommel M., Jaillard A. Upper limb recovery after stroke is associated with ipsilesional primary motor cortical activity: a meta-analysis. Stroke. 2014;45(4):1077–1083. doi: 10.1161/STROKEAHA.113.003168.
    1. Hawe R. L., Scott S. H., Dukelow S. P. Taking proportional out of stroke recovery. Stroke. 2019;50(1):204–211. doi: 10.1161/STROKEAHA.118.023006.
    1. Lindenberg R., Zhu L. L., Ruber T., Schlaug G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Human Brain Mapping. 2012;33(5):1040–1051. doi: 10.1002/hbm.21266.
    1. Koch P., Schulz R., Hummel F. C. Structural connectivity analyses in motor recovery research after stroke. Annals of Clinical and Translational Neurology. 2016;3(3):233–244. doi: 10.1002/acn3.278.
    1. Schulz R., Park E., Lee J., et al. Interactions between the corticospinal tract and premotor–motor pathways for residual motor output after stroke. Stroke. 2017;48(10):2805–2811. doi: 10.1161/STROKEAHA.117.016834.
    1. Schulz R., Park C. H., Boudrias M. H., Gerloff C., Hummel F. C., Ward N. S. Assessing the integrity of corticospinal pathways from primary and secondary cortical motor areas after stroke. Stroke. 2012;43(8):2248–2251. doi: 10.1161/STROKEAHA.112.662619.
    1. Liu J., Qin W., Zhang J., Zhang X., Yu C. Enhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke. Stroke. 2015;46(4):1045–1051. doi: 10.1161/STROKEAHA.114.007044.
    1. Li Y., Wu P., Liang F., Huang W. The microstructural status of the corpus callosum is associated with the degree of motor function and neurological deficit in stroke patients. PLoS One. 2015;10(4, article e0122615) doi: 10.1371/journal.pone.0122615.
    1. Benraiss A., Chmielnicki E., Lerner K., Roh D., Goldman S. A. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. The Journal of Neuroscience. 2001;21(17):6718–6731. doi: 10.1523/JNEUROSCI.21-17-06718.2001.
    1. Egan M. F., Kojima M., Callicott J. H., et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257–269. doi: 10.1016/S0092-8674(03)00035-7.
    1. Chen J., Zhang C., Jiang H., et al. Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. Journal of Cerebral Blood Flow and Metabolism. 2005;25(2):281–290. doi: 10.1038/sj.jcbfm.9600034.
    1. Ploughman M., Windle V., MacLellan C. L., White N., Doré J. J., Corbett D. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke. 2009;40(4):1490–1495. doi: 10.1161/STROKEAHA.108.531806.
    1. Cramer S. C., Procaccio V. Correlation between genetic polymorphisms and stroke recovery: analysis of the GAIN Americas and GAIN International Studies. European Journal of Neurology. 2012;19(5):718–724. doi: 10.1111/j.1468-1331.2011.03615.x.
    1. Kim J. M., Stewart R., Park M. S., et al. Associations of BDNF genotype and promoter methylation with acute and long-term stroke outcomes in an East Asian cohort. PLoS One. 2012;7(12, article e51280) doi: 10.1371/journal.pone.0051280.
    1. Siironen J., Juvela S., Kanarek K., Vilkki J., Hernesniemi J., Lappalainen J. The Met allele of the BDNF Val66Met polymorphism predicts poor outcome among survivors of aneurysmal subarachnoid hemorrhage. Stroke. 2007;38(10):2858–2860. doi: 10.1161/STROKEAHA.107.485441.
    1. Kim D. Y., Quinlan E. B., Gramer R., Cramer S. C. BDNF Val66Met polymorphism is related to motor system function after stroke. Physical Therapy. 2016;96(4):533–539. doi: 10.2522/ptj.20150135.
    1. Kim E. J., Park C. H., Chang W. H., et al. The brain-derived neurotrophic factor Val66Met polymorphism and degeneration of the corticospinal tract after stroke: a diffusion tensor imaging study. European Journal of Neurology. 2016;23(1):76–84. doi: 10.1111/ene.12791.
    1. Schulz R., Koch P., Zimerman M., et al. Parietofrontal motor pathways and their association with motor function after stroke. Brain. 2015;138(7):1949–1960. doi: 10.1093/brain/awv100.
    1. Alexander A. L., Lee J. E., Lazar M., Field A. S. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–329. doi: 10.1016/j.nurt.2007.05.011.
    1. Ziegler E., Foret A., Mascetti L., et al. Altered white matter architecture in BDNF met carriers. PLoS One. 2013;8(7, article e69290) doi: 10.1371/journal.pone.0069290.
    1. Singh K. K., Park K. J., Hong E. J., et al. Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nature Neuroscience. 2008;11(6):649–658. doi: 10.1038/nn.2114.
    1. Nudo R. J., Milliken G. W. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. Journal of Neurophysiology. 1996;75(5):2144–2149. doi: 10.1152/jn.1996.75.5.2144.
    1. Boddington L. J., Reynolds J. N. J. Targeting interhemispheric inhibition with neuromodulation to enhance stroke rehabilitation. Brain Stimulation. 2017;10(2):214–222. doi: 10.1016/j.brs.2017.01.006.
    1. Shimizu T., Hosaki A., Hino T., et al. Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain. 2002;125(8):1896–1907. doi: 10.1093/brain/awf183.
    1. Nelles G., Spiekermann G., Jueptner M., et al. Evolution of functional reorganization in hemiplegic stroke: a serial positron emission tomographic activation study. Annals of Neurology. 1999;46(6):901–909. doi: 10.1002/1531-8249(199912)46:6<901::AID-ANA13>;2-7.
    1. Ward N., Brown M., Thompson A., Frackowiak R. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain. 2003;126(11):2476–2496. doi: 10.1093/brain/awg245.
    1. Mukaka M. M. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal. 2012;24(3):69–71.
    1. Niimi M., Hashimoto K., Kakuda W., et al. Role of brain-derived neurotrophic factor in beneficial effects of repetitive transcranial magnetic stimulation for upper limb hemiparesis after stroke. PLoS One. 2016;11(3, article e0152241) doi: 10.1371/journal.pone.0152241.

Source: PubMed

3
Sottoscrivi