Expression of substance P, calcitonin gene-related peptide and vascular endothelial growth factor in human dental pulp under different clinical stimuli

Javier Caviedes-Bucheli, Luis Fernando Lopez-Moncayo, Hernan Dario Muñoz-Alvear, Jose Francisco Gomez-Sosa, Luis Eduardo Diaz-Barrera, Hernando Curtidor, Hugo Roberto Munoz, Javier Caviedes-Bucheli, Luis Fernando Lopez-Moncayo, Hernan Dario Muñoz-Alvear, Jose Francisco Gomez-Sosa, Luis Eduardo Diaz-Barrera, Hernando Curtidor, Hugo Roberto Munoz

Abstract

Background: The aim of this study was to measure the dental pulp inflammatory response through neuropeptides (SP and CGRP) as a response to occlusal trauma, orthodontic movements and a combination of both, as well as the angiogenic defense mechanism through VEGF expression, which could be the initial step to mineralized tissue formation.

Methods: Forty human dental pulp samples were collected from healthy first premolars with extraction indicated due to orthodontic reasons from a sample of 20 patients. Patients were divided into four groups with 10 premolars each (1 mandibular and 1 maxillary premolar from each patient): healthy pulp control group, occlusal trauma group, moderate orthodontic forces group; and occlusal trauma plus moderate orthodontic forces group. Stimuli were applied for 24 h before tooth extraction in all experimental groups. All samples were processed, and SP, CGRP, and VEGF were measured by radioimmunoassay. The Kruskal-Wallis test was performed to assess significant differences among groups and Mann-Whitney's U post hoc pairwise comparisons were also performed.

Results: The highest increase in SP, CGRP, and VEGF expressions was found in the occlusal trauma plus orthodontic forces group, followed by the moderate orthodontic forces, the occlusal trauma and the control groups, with statistically significant differences between all groups for each of the 3 peptides analyzed (Kruskal-Wallis p < 0.001). All possible pairwise post-hoc comparisons were also significant for each peptide analyzed (Mann-Whitney's U p < 0.001).

Conclusion: SP, CGRP, and VEGF expressions significantly increase in human dental pulps when stimulated by occlusal trauma combined with moderate orthodontic forces, as compared with these two stimuli applied independently. Name of the registry: Importance of Neurogenic Inflammation in the Angiogenic Response of the Dental Pulp as a Defensive Response.

Trial registration number: NCT03804034. Date of registration: 01/15/2019 Retrospectively registered. URL of trial registry record: https://ichgcp.net/clinical-trials-registry/NCT03804034?term=NCT03804034&draw=2&rank=1 .

Keywords: CGRP; Neurogenic inflammation; Occlusal trauma; Orthodontics force; SP; VEGF.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Clinical images of the different stimuli applied to the patients in each group. a Control Group (without occlusal trauma nor orthodontic force); b occlusal trauma group; c moderate orthodontic force group; d occlusal trauma plus moderate orthodontic force group
Fig. 2
Fig. 2
Substance P (SP) expression (pmol/mg) in human dental pulp from teeth under different stimuli (Colored boxes: mean and 95% confidence interval, whiskers: minimum and maximum values, circle dots: individual sample values)
Fig. 3
Fig. 3
Calcitonin gene-related peptide (CGRP) expression (pmol/mg) in human dental pulp from teeth under different stimuli (Colored boxes: mean and 95% confidence interval, whiskers: minimum and maximum values, circle dots: individual sample values)
Fig. 4
Fig. 4
Vascular endothelial growth factor (VEGF) expression (pmol/mg) in human dental pulp from teeth under different stimuli (Colored boxes: mean and 95% confidence interval, whiskers: minimum and maximum values, circle dots: individual sample values)

References

    1. Caviedes-Bucheli J, Muñoz HR, Azuero-Holguín MM, Ulate E. Neuropeptides in dental pulp: the silent protagonists. J Endod. 2013;34:773–788. doi: 10.1016/j.joen.2008.03.010.
    1. Aranha AM, Zhang Z, Neiva KG, Costa CA, Hebling J, Nör JE. Hypoxia enhances the angiogenic potential of human dental pulp cells. J Endod. 2010;36:1633–1637. doi: 10.1016/j.joen.2010.05.013.
    1. Lee YH, Kim GE, Cho HJ, Yu MK, Bhattarai G, Lee NH, Yi HK. Aging of in vitro pulp illustrates change of inflammation and dentinogenesis. J Endod. 2013;39:340–345. doi: 10.1016/j.joen.2012.10.031.
    1. Caviedes-Bucheli J, Gomez-Sosa JF, Azuero-Holguin MM, Ormeño-Gomez M, Pinto-Pascual V, Munoz HR. Angiogenic mechanisms of human dental pulp and their relationship with substance P expression in response to occlusal trauma. Int Endod J. 2017;50:339–351. doi: 10.1111/iej.12627.
    1. Killough SA, Lundy FT, Irwin CR. Substance P expression by human dental pulp fibroblasts: a potential role in neurogenic inflammation. J Endod. 2009;35:73–77. doi: 10.1016/j.joen.2008.10.010.
    1. Tran-Hung L, Mathieu S, About I. Role of human pulp fibroblasts in angiogenesis. J Dent Res. 2006;85:819–823. doi: 10.1177/154405910608500908.
    1. El karim IA, Linden GJ, Irwin CR, Lundy FT. Neuropeptides regulate expression of angiogenic growth factors in human dental pulp fibroblasts. J Endod. 2009;35:829–833. doi: 10.1016/j.joen.2009.03.005.
    1. Uddman R, Kato J, Lindgren P, Sundler F, Edvinsson L. Expression of calcitonin gene-related peptide-1 receptor mRNA in human tooth pulp and trigeminal ganglion. Arch Oral Biol. 1999;44:1–6. doi: 10.1016/S0003-9969(98)00102-2.
    1. Tuo Y, Guo X, Zhang X, Wang Z, Zhou J, Xia L, Zhang Y, Wen J, Jin D. The biological effects and mechanisms of calcitonin gene-related peptide on human endothelial cell. J Recept Signal Transduct. 2013;33:114–123. doi: 10.3109/10799893.2013.770528.
    1. Grando Mattuella L, Westphalen Bento L, de Figueiredo JA, Nör JE, de Araujo FB, Fossati AC. Vascular endothelial growth factor and its relationship with the dental pulp. J Endod. 2007;33:524–530. doi: 10.1016/j.joen.2007.01.003.
    1. Saghiri MA, Asatourian A, Sorenson CM, Sheibani N. Role of angiogenesis in endodontics: contributions of stem cells and proangiogenic and antiangiogenic factors to dental pulp regeneration. J Endod. 2015;41:797–803. doi: 10.1016/j.joen.2014.12.019.
    1. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–887. doi: 10.1016/j.cell.2011.08.039.
    1. Wei F, Yang S, Xu H, Guo Q, Li Q, Hu L, Liu D, Wang C. Expression and function of hypoxia inducible factor-1 α and vascular endothelial growth factor in pulp tissue of teeth under orthodontic movement. Mediators Inflamm. 2015:1–9.
    1. Rombouts C, Giraud T, Jeanneau C, About I. Pulp vascularization during tooth development, regeneration, and therapy. J Dent Res. 2017;96:137–144. doi: 10.1177/0022034516671688.
    1. Ikeda T, Nakano M, Bando E, Suzuki A. The effect of light premature occlusal contact on tooth pain threshold in humans. J Oral Rehabil. 1998;25:589–595. doi: 10.1046/j.1365-2842.1998.00295.x.
    1. Roberts-Clark DJ, Smith AJ. Angiogenic growth factors in human dentine matrix. Arch Oral Biol. 2000;45:1013–1016. doi: 10.1016/S0003-9969(00)00075-3.
    1. Derringer KA, Linden RWA. Angiogenic growth factors released in human dental pulp following orthodontic force. Arch Oral Biol. 2003;48:285–291. doi: 10.1016/S0003-9969(03)00008-6.
    1. Caviedes-Bucheli J, Azuero-Holguin MM, Correa-Ortiz JA, Aguilar-Mora MV, Pedroza-Flores JD, Ulate E, Lombana N, Munoz HR. Effect of experimentally induced occlusal trauma on substance P expression in human dental pulp and periodontal ligament. J Endod. 2011;37:627–630. doi: 10.1016/j.joen.2011.02.013.
    1. Caviedes-Bucheli J, Moreno JO, Ardila-Pinto J, Del Toro-Carreño HR, Saltarín-Quintero H, Sierra-Tapias CL, Macias-Gomez F, Ulate E, Lombana-Sanchez N, Munoz HR. The effect of orthodontic forces on calcitonin gene-related peptide expression in human dental pulp. J Endod. 2011;37:934–937. doi: 10.1016/j.joen.2011.03.035.
    1. Caviedes-Bucheli J, Lombana N, Azuero-Holguin MM, Munoz HR. Quantification of neuropeptides (calcitonin gene-related peptide, substance P, neurokinin A, neuropeptide Y and vasoactive intestinal polypeptide) expressed in healthy and inflamed human dental pulp. Int Endod J. 2006;39:394–400. doi: 10.1111/j.1365-2591.2006.01093.x.
    1. Lundy FT, Linden GJ. Neuropeptides and neurogenic mechanisms in oral and periodontal inflammation. Crit Rev Oral Biol Med. 2004;15:82–98. doi: 10.1177/154411130401500203.
    1. Artese L, Rubini C, Ferrero G, Fioroni M, Santinelli A, Piattelli A. Vascular endothelial growth factor (VEGF) expression in healthy and inflamed human dental pulps. J Endod. 2002;28:20–23. doi: 10.1097/00004770-200201000-00005.
    1. Mishima T, Ito Y, Hosono K, Tamura Y, Uchida Y, Hirata M, Suzsuki T, Amano H, Kato S, Kurihara Y, Kurihara H, Hayashi I, Watanabe M, Majima M. Calcitonin gene-related peptide facilitates revascularization during hindlimb ischemia in mice. Am J Physiol - Hear Circ Physiol. 2011;300:H431–H439. doi: 10.1152/ajpheart.00466.2010.
    1. Rechenberg DK, Galicia JC, Peters OA. Biological markers for pulpal inflammation: A systematic review. PLoS ONE. 2016;11:e0167289. doi: 10.1371/journal.pone.0167289.
    1. Zheng S, Li W, Xu M, Bai X, Zhou Z, Han J, Shyy JY, Wang X. Calcitonin gene-related peptide promotes angiogenesis via AMP-activated protein kinase. Am J Physiol—Cell Physiol. 2010;299:C1485–C1492. doi: 10.1152/ajpcell.00173.2010.
    1. Arana-Chavez VE, Massa LF. Odontoblasts: The cells forming and maintaining dentine. Int J Biochem Cell Biol. 2004;36:1367–1373. doi: 10.1016/j.biocel.2004.01.006.
    1. Sakdee JB, White RR, Pagonis TC, Hauschka PV. Hypoxia-amplified Proliferation of Human Dental Pulp Cells. J Endod. 2009;35:818–823. doi: 10.1016/j.joen.2009.03.001.
    1. Römer P, Wolf M, Fanghänel J, Reicheneder C, Proff P. Cellular response to orthodontically-induced short-term hypoxia in dental pulp cells. Cell Tissue Res. 2014;355:173–180. doi: 10.1007/s00441-013-1739-y.
    1. Olsson M, Lindqvist B. Occlusal interferences in orthodontic patients before and after treatment, and in subjects with minor orthodontic treatment need. Eur J Orthod. 2002;24:677–687. doi: 10.1093/ejo/24.6.677.
    1. Ren Y, Maltha JC, Kuijpers-Jagtman AM. Optimum force magnitude for orthodontic tooth movement: A systematic literature review. Angle Orthod. 2003;73:86–92.
    1. Von Böhl M, Ren Y, Fudalej PS, Kuijpers-Jagtman AM. Pulpal reactions to orthodontic force application in humans: A systematic review. J Endod. 2012;38:1463–1469. doi: 10.1016/j.joen.2012.07.001.

Source: PubMed

3
Sottoscrivi