Periventricular gradient of T1 tissue alterations in multiple sclerosis

Manuela Vaneckova, Gian Franco Piredda, Michaela Andelova, Jan Krasensky, Tomas Uher, Barbora Srpova, Eva Kubala Havrdova, Karolina Vodehnalova, Dana Horakova, Tom Hilbert, Bénédicte Maréchal, Mário João Fartaria, Veronica Ravano, Tobias Kober, Manuela Vaneckova, Gian Franco Piredda, Michaela Andelova, Jan Krasensky, Tomas Uher, Barbora Srpova, Eva Kubala Havrdova, Karolina Vodehnalova, Dana Horakova, Tom Hilbert, Bénédicte Maréchal, Mário João Fartaria, Veronica Ravano, Tobias Kober

Abstract

Objective: Pathology in multiple sclerosis is not homogenously distributed. Recently, it has been shown that structures adjacent to CSF are more severely affected. A gradient of brain tissue involvement was shown with more severe pathology in periventricular areas and in proximity to brain surfaces such as the subarachnoid spaces and ependyma, and hence termed the "surface-in" gradient. Here, we study whether (i) the surface-in gradient of periventricular tissue alteration measured by T1 relaxometry is already present in early multiple sclerosis patients, (ii) how it differs between early and progressive multiple sclerosis patients, and (iii) whether the gradient-derived metrics in normal-appearing white matter and lesions correlate better with physical disability than conventional MRI-based metrics.

Methods: Forty-seven patients with early multiple sclerosis, 52 with progressive multiple sclerosis, and 92 healthy controls were included in the study. Isotropic 3D T1 relaxometry maps were obtained using the Magnetization-Prepared 2 Rapid Acquisition Gradient Echoes sequence at 3 T. After spatially normalizing the T1 maps into a study-specific common space, T1 inter-subject variability within the healthy cohort was modelled voxel-wise, yielding a normative T1 atlas. Individual comparisons of each multiple sclerosis patient against the atlas were performed by computing z-scores. Equidistant bands of voxels were defined around the ventricles in the supratentorial white matter; the z-scores in these bands were analysed and compared between the early and progressive multiple sclerosis cohorts. Correlations between both conventional and z-score-gradient-derived MRI metrics and the Expanded Disability Status Scale were assessed.

Results: Patients with early and progressive multiple sclerosis demonstrated a periventricular gradient of T1 relaxation time z-scores. In progressive multiple sclerosis, z-score-derived metrics reflecting the gradient of tissue abnormality in normal-appearing white matter were more strongly correlated with disability (maximal rho = 0.374) than the conventional lesion volume and count (maximal rho = 0.189 and 0.21 respectively). In early multiple sclerosis, the gradient of normal-appearing white matter volume with z-scores > 2 at baseline correlated with clinical disability assessed at two years follow-up.

Conclusion: Our results suggest that the surface-in white matter gradient of tissue alteration is detectable with T1 relaxometry and is already present at clinical disease onset. The periventricular gradients correlate with clinical disability. The periventricular gradient in normal-appearing white matter may thus qualify as a promising biomarker for monitoring of disease activity from an early stage in all phenotypes of multiple sclerosis.

Trial registration: ClinicalTrials.gov NCT03706118.

Keywords: Atlas-based assessment; Gradient of tissue damage; MP2RAGE; Multiple sclerosis; T(1)-relaxometry.

Conflict of interest statement

M. Vaneckova received speaker honoraria, consultant fees, and travel expenses from Biogen Idec, Novartis, Roche, Genzyme, and Teva, as well as support for research activities from Biogen Idec. G.F. Piredda, T. Hilbert, B. Marechal and T. Kober are employees of Siemens Healthcare AG, Switzerland. M. Andelova received financial support for conference travel from Novartis, Genzyme, Merck Serono, Biogen Idec, and Roche. J. Krasensky received financial support for research activities from Biogen Idec. T. Uher received financial support for conference travel and honoraria from Biogen Idec, Novartis, Roche, Genzyme, and Merck Serono, as well as support for research activities from Biogen Idec and Sanofi.B. Srpova received financial support for conference travel from Novartis, Genzyme, Merck Serono, Biogen Idec, and Roche. E. Kubala Havrdova received speaker honoraria and consultant fees from Biogen Idec, Merck Serono, Novartis, Genzyme, Teva, Actelion, and Receptos, as well as support for research activities from Biogen Idec and Merck Serono. K. Vodehnalova received compensation for travel, conference fees, and consulting fees from Merck, Sanofi Genzyme, Biogen Idec, and Novartis. D. Horakova received compensation for travel, speaker honoraria and consultant fees from Biogen Idec, Novartis, Merck Serono, Bayer Shering, and Teva, as well as support for research activities from Biogen Idec.

Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Computation of T1 z-score maps and periventricular gradient extraction. Representative slices of (A) the anatomical study-specific template, (B) the normative T1 atlas, and (C) the distance to ventricles of the supratentorial WM voxels. The intercept, sex, age, and age2 maps in (B) are intended as the β0, βsex, βage and βage2 coefficients of the following equation describing the expected reference T1 value in a given brain voxel: ET1=β0,T1+βsex,T1∗sex+βage,T1∗age+βage2,T1∗age2, with sex being a categorical variable and the age expressed in years and centred at the mean age of the healthy control cohort (37 y). The first band was excluded to minimise the partial volume effect.
Fig. 2
Fig. 2
Periventricular gradients in NAWM for mean absolute z-score (exceeding the prediction interval of the T1 normative linear model at a 95% level of confidence) and for volume with absolute (z-score) > 2. (A) mean absolute z-scores, (B) volume with absolute (|z-score|) > 2. Error bars indicate two standard errors.
Fig. 3
Fig. 3
Correlation between gradient of z-scores in NAWM and EDSS (change between bands for z-score thresholds of 0, 1, 2 and 3) in patients with progressive multiple sclerosis: (A) band 1:5; (B) band 1:10 (C) band 1:20. (* indicates statistically significant values).
Fig. 4
Fig. 4
Correlation between gradient of lesion volume exceeding a given z-score threshold at baseline and EDSS assessed 2 years after baseline (change between bands for z-score thresholds of 0, 1, 2 and 3) in patients with early multiple sclerosis: (A) band 1:5; (B) band 1:10; (C) band 1:20. (* indicates statistically significant values, * p 

References

    1. Avants B.B., Tustison N.J., Song G., Cook P.A., Klein A., Gee J.C. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage. 2011;54(3):2033–2044. doi: 10.1016/j.neuroimage.2010.09.025.
    1. Bakshi R., Neema M., Healy B.C., Liptak Z., Betensky R.A., Buckle G.J., Gauthier S.A., Stankiewicz J., Meier D., Egorova S., Arora A., Guss Z.D., Glanz B., Khoury S.J., Guttmann C.R.G., Weiner H.L. Predicting clinical progression in multiple sclerosis with the magnetic resonance disease severity scale. Arch. Neurol. 2008;65(11):1449–1453. doi: 10.1001/archneur.65.11.1449.
    1. Bergman J., Burman J., Bergenheim T., Svenningsson A. Intrathecal treatment trial of rituximab in progressive MS: results after a 2-year extension. J. Neurol. 2021;268(2) doi: 10.1007/s00415-020-10210-0.
    1. Bodini B., Poirion E., Tonietto M., Benoit C., Palladino R., Maillart E., Portera E., Battaglini M., Bera G., Kuhnast B., Louapre C., Bottlaender M., Stankoff B. Individual mapping of innate immune cell activation is a candidate marker of patient-specific trajectories of worsening disability in multiple sclerosis. J. Nucl. Med. 2020;61(7):1043–1049. doi: 10.2967/jnumed.119.231340.
    1. Brown J.W.L., Pardini M., Brownlee W.J., Fernando K., Samson R.S., Prados Carrasco F., Ourselin S., Gandini Wheeler-Kingshott C.A.M., Miller D.H., Chard D.T. An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis. Brain. 2017;140(2):387–398.
    1. Brown J.W.L., Prados Carrasco F., Eshaghi A., Sudre C.H., Button T., Pardini M., Samson R.S., Ourselin S., Wheeler-Kingshott C.AM.G., Jones J.L., Coles A.J., Chard D.T. Periventricular magnetisation transfer ratio abnormalities in multiple sclerosis improve after alemtuzumab. Mult. Scler. J. 2020;26(9) doi: 10.1177/1352458519852093.
    1. Brown J.W.L., Chowdhury A., Kanber B., Prados Carrasco F., Eshaghi A., Sudre C.H., Pardini M., Samson R.S., van de Pavert S.HP., Wheeler-Kingshott C.G., Chard D.T. Magnetisation transfer ratio abnormalities in primary and secondary progressive multiple sclerosis. Mult. Scler. J. 2020;26(6) doi: 10.1177/1352458519841810.
    1. Brown D.A., Sawchenko P.E. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J. Comp. Neurol. 2007;502(2) doi: 10.1002/cne.21307.
    1. Cacciaguerra L., Rocca M.A., Storelli L., Radaelli M., Filippi M. Mapping white matter damage distribution in neuromyelitis optica spectrum disorders with a multimodal MRI approach. Mult. Scler. J. 2021;27(6) doi: 10.1177/1352458520941493.
    1. Combès B., Kerbrat A., Ferré J.C., Callot V., Maranzano J., Badji A., Le Page E., Labauge P., Ayrignac X., Carra Dallière C., de Champfleur N.M., Pelletier J., Maarouf A., de Seze J., Collongues N., Brassat D., Durand-Dubief F., Barillot C., Bannier E., Edan G. Focal and diffuse cervical spinal cord damage in patients with early relapsing–remitting MS: A multicentre magnetisation transfer ratio study. Mult. Scler. 2019;25(8) doi: 10.1177/1352458518781999.
    1. Compston A., Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–1517. doi: 10.1016/S0140-6736(08)61620-7.
    1. Correale J., Gaitán M.I., Ysrraelit M.C., Fiol M.P. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2017;140:527–546.
    1. De Meo E., Storelli L., Moiola L., et al. In vivo gradients of thalamic damage in paediatric multiple sclerosis: a window into pathology. Brain. 2021;144(1) doi: 10.1093/brain/awaa379.
    1. De Santis S., Granberg T., Ouellette R., Treaba C.A., Herranz E., Fan Q., Mainero C., Toschi N. Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI. NeuroImage Clin. 2019;22:101699.
    1. Dekker I., Sombekke M.H., Balk L.J., Moraal B., Geurts J.JG., Barkhof F., Uitdehaag B.MJ., Killestein J., Wattjes M.P. Infratentorial and spinal cord lesions: cumulative predictors of long-term disability? Mult. Scler. J. Published online. 2020;26(11) doi: 10.1177/1352458519864933.
    1. Droby A., Fleischer V., Carnini M., Zimmermann H., Siffrin V., Gawehn J., Erb M., Hildebrandt A., Baier B., Zipp F. The impact of isolated lesions on white-matter fiber tracts in multiple sclerosis patients. NeuroImage Clin. 2015;8:110–116. doi: 10.1016/j.nicl.2015.03.003.
    1. Dwyer M.G., Bergsland N., Ramasamy D.P., Jakimovski D., Weinstock-Guttman B., Zivadinov R. Atrophied brain lesion volume: a new imaging biomarker in multiple sclerosis. J. Neuroimaging. 2018;28(5) doi: 10.1111/jon.12527.
    1. Fartaria M.J., Bonnier G., Roche A., Kober T., Meuli R., Rotzinger D., Frackowiak R., Schluep M., Du Pasquier R., Thiran J.-P., Krueger G., Bach Cuadra M., Granziera C. Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. J. Magn. Reson. Imaging. 2016;43(6):1445–1454. doi: 10.1002/jmri.25095.
    1. Fartaria M.J., Kober T., Granziera C., Bach Cuadra M. Longitudinal analysis of white matter and cortical lesions in multiple sclerosis. NeuroImage Clin. 2019;23:101938.
    1. Giorgio A., Battaglini M., Rocca M.A., De Leucio A., Absinta M., van Schijndel R., Rovira A., Tintore M., Chard D., Ciccarelli O., Enzinger C., Gasperini C., Frederiksen J., Filippi M., Barkhof F., De Stefano N. Location of brain lesions predicts conversion of clinically isolated syndromes to multiple sclerosis. Neurology. 2013;80(3) doi: 10.1212/WNL.0b013e31827debeb.
    1. Haider L., Zrzavy T., Hametner S., Höftberger R., Bagnato F., Grabner G., Trattnig S., Pfeifenbring S., Brück W., Lassmann H. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain. 2016;139(3):807–815.
    1. Jonkman L.E., Soriano A.L., Amor S., Barkhof F., van der Valk P., Vrenken H., Geurts J.J.G. Can MS lesion stages be distinguished with MRI? A postmortem MRI and histopathology study. J. Neurol. 2015;262(4) doi: 10.1007/s00415-015-7689-4.
    1. Jurynczyk M., Geraldes R., Probert F., et al. Distinct brain imaging characteristics of autoantibody-mediated CNS conditions and multiple sclerosis. Brain. 2017;140(3) doi: 10.1093/brain/aww350.
    1. Komori M., Lin Y.C., Cortese I., Blake A., Ohayon J., Cherup J., Maric D., Kosa P., Wu T., Bielekova B. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann. Clin. Transl. Neurol. 2016;3(3) doi: 10.1002/acn3.293.
    1. Kurtzke J.F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS) Neurology. 1983;33(11) doi: 10.1212/wnl.33.11.1444.
    1. Lassmann H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front. Immunol. 2019;10(JAN) doi: 10.3389/fimmu.2018.03116.
    1. Liu Z., Pardini M., Yaldizli Ö., Sethi V., Muhlert N., Wheeler-Kingshott C.A.M., Samson R.S., Miller D.H., Chard D.T. Magnetization transfer ratio measures in normal-appearing white matter show periventricular gradient abnormalities in multiple sclerosis. Brain. 2015;138(5):1239–1246.
    1. Magliozzi R., Howell O.W., Reeves C., Roncaroli F., Nicholas R., Serafini B., Aloisi F., Reynolds R. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 2010;68(4) doi: 10.1002/ana.22230.
    1. Mainero C., Louapre C., Govindarajan S.T., et al. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. Brain. 2015;138(4) doi: 10.1093/brain/awv011.
    1. Marques J.P., Kober T., Krueger G., van der Zwaag W., Van de Moortele P.-F., Gruetter R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage. 2010;49(2):1271–1281. doi: 10.1016/j.neuroimage.2009.10.002.
    1. Marques J.P., Gruetter R., Yacoub E. New developments and applications of the MP2RAGE sequence - focusing the contrast and high spatial resolution R1 mapping. PLoS ONE. 2013;8(7) doi: 10.1371/journal.pone.0069294.
    1. Moccia M., van de Pavert S., Eshaghi A., Haider L., Pichat J., Yiannakas M., Ourselin S., Wang Y.i., Wheeler-Kingshott C., Thompson A., Barkhof F., Ciccarelli O. Pathologic correlates of the magnetization transfer ratio in multiple sclerosis. Neurology. 2020;95(22):e2965–e2976. doi: 10.1212/WNL.0000000000010909.
    1. Moll N.M., Rietsch A.M., Thomas S., Ransohoff A.J., Lee J.-C., Fox R., Chang A., Ransohoff R.M., Fisher E. Multiple sclerosis normal-appearing white matter: pathology-imaging correlations. Ann. Neurol. 2011;70(5):764–773.
    1. Mottershead J.P., Schmierer K., Clemence M., Thornton J.S., Scaravilli F., Barker G.J., Tofts P.S., Newcombe J., Cuzner M.L., Ordidge R.J., McDonald W.I., Miller D.H. High field MRI correlates of myelin content and axonal density in multiple sclerosis: a post-mortem study of the spinal cord. J. Neurol. 2003;250(11) doi: 10.1007/s00415-003-0192-3.
    1. Mussard E., Hilbert T., Forman C., Meuli R., Thiran J.P., Kober T. Accelerated MP2RAGE imaging using Cartesian phyllotaxis readout and compressed sensing reconstruction. Magn. Reson. Med. 2020;84(4):1881–1894. doi: 10.1002/mrm.28244.
    1. Narayanan S., Fu L., Pioro E., De Stefano N., Collins D.L., Francis G.S., Antel J.P., Matthews P.M., Arnold D.L. Imaging of axonal damage in multiple sclerosis: spatial distribution of magnetic resonance imaging lesions. Ann. Neurol. 1997;41(3) doi: 10.1002/ana.410410314.
    1. Pardini M., Sudre C.H., Prados F., Yaldizli Ö., Sethi V., Muhlert N., Samson R.S., van de Pavert S.H., Cardoso M.J., Ourselin S., Gandini Wheeler-Kingshott C.A.M., Miller D.H., Chard D.T. Relationship of grey and white matter abnormalities with distance from the surface of the brain in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2016;87(11):1212–1217. doi: 10.1136/jnnp-2016-313979.
    1. Pardini M., Brown J.W.L., Magliozzi R., Reynolds R., Chard D.T. Surface-in pathology in multiple sclerosis: a new view on pathogenesis? Brain. 2021;144(6):1646–1654. doi: 10.1093/brain/awab025.
    1. Petracca M., Margoni M., Bommarito G., Inglese M. Monitoring progressive multiple sclerosis with novel imaging techniques. Neurol. Ther. 2018;7:265–285.
    1. Piredda G.F., Hilbert T., Granziera C., Bonnier G., Meuli R., Molinari F., Thiran J.-P., Kober T. Quantitative brain relaxation atlases for personalized detection and characterization of brain pathology. Magn. Reson. Med. 2020;83(1):337–351. doi: 10.1002/mrm.27927.
    1. Poirion E., Tonietto M., Lejeune F.-X., Ricigliano V.A.G., Boudot de la Motte M., Benoit C., Bera G., Kuhnast B., Bottlaender M., Bodini B., Stankoff B. Structural and clinical correlates of a periventricular gradient of neuroinflammation in multiple sclerosis. Neurology. Published online. 2021;96(14) doi: 10.1212/wnl.0000000000011700.
    1. Popescu B.F.G., Lucchinetti C.F. Pathology of demyelinating diseases. Annu. Rev. Pathol. Mech. Dis. 2012;7:185–217. doi: 10.1146/annurev-pathol-011811-132443.
    1. Samson R.S., Cardoso M.J., Muhlert N., Sethi V., Wheeler-Kingshott ., Ron M., Ourselin S., Miller D.H., Chard D.T. Investigation of outer cortical magnetisation transfer ratio abnormalities in multiple sclerosis clinical subgroups. Mult. Scler. 2014;20(10) doi: 10.1177/1352458514522537.
    1. Schmitter D., Roche A., Maréchal B., Ribes D., Abdulkadir A., Bach-Cuadra M., Daducci A., Granziera C., Klöppel S., Maeder P., Meuli R., Krueger G. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease. NeuroImage Clin. Published online. 2015;7 doi: 10.1016/j.nicl.2014.11.001.
    1. Simioni S., Amarù F., Bonnier G., Kober T., Rotzinger D., Du Pasquier R., Schluep M., Meuli R., Sbarbati A., Thiran J.-P., Krueger G., Granziera C. MP2RAGE provides new clinically-compatible correlates of mild cognitive deficits in relapsing-remitting multiple sclerosis. J. Neurol. 2014;261(8) doi: 10.1007/s00415-014-7398-4.
    1. Sinnecker T., Ruberte E., Schädelin S., Canova V., Amann M., Naegelin Y., Penner I.-K., Müller J., Kuhle J., Décard B., Derfuss T., Kappos L., Granziera C., Wuerfel J., Magon S., Yaldizli Ö. New and enlarging white matter lesions adjacent to the ventricle system and thalamic atrophy are independently associated with lateral ventricular enlargement in multiple sclerosis. J. Neurol. 2020;267(1) doi: 10.1007/s00415-019-09565-w.
    1. Tallantyre E.C., Morgan P.S., Dixon J.E., Al-Radaideh A., Brookes M.J., Evangelou N., Morris P.G. A comparison of 3T and 7T in the detection of small parenchymal veins within MS lesions. Invest. Radiol. 2009;44(9) doi: 10.1097/rli.0b013e3181b4c144.
    1. Thaler C., Faizy T., Sedlacik J., Holst B., Stellmann J.-P., Young K.L., Heesen C., Fiehler J., Siemonsen S., Ramagopalan S.V. T1-Thresholds in black holes increase clinical-radiological correlation in multiple sclerosis patients. PLoS ONE. 2015;10(12) doi: 10.1371/journal.pone.0144693.
    1. Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., Fujihara K., Galetta S.L., Hartung H.P., Kappos L., Lublin F.D., Marrie R.A., Miller A.E., Miller D.H., Montalban X., Mowry E.M., Sorensen P.S., Tintoré M., Traboulsee A.L., Trojano M., Uitdehaag B.M.J., Vukusic S., Waubant E., Weinshenker B.G., Reingold S.C., Cohen J.A. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2) doi: 10.1016/S1474-4422(17)30470-2.
    1. Tintore, M., Rovira, A., Arrambide, G., et al., 2010. Brainstem Lesions in Clinically Isolated Syndromes. .
    1. Vrenken H., Geurts J.J., Knol D.L., Polman C.H., Castelijns J.A., Pouwels P.J., Barkhof F. Normal-appearing white matter changes vary with distance to lesions in multiple sclerosis. AJNR Am J Neuroradiol. 2006;27(9):2005–2011.
    1. Vrenken H., Geurts J.J.G., Knol D.L., van Dijk L.N., Dattola V., Jasperse B., van Schijndel R.A., Polman C.H., Castelijns J.A., Barkhof F., Pouwels P.J.W. Whole-brain T1 mapping in multiple sclerosis: Global changes of normal-appearing gray and white matter. Radiology. 2006;240(3) doi: 10.1148/radiol.2403050569.
    1. Wardlaw J.M., Smith E.E., Biessels G.J., Cordonnier C., Fazekas F., Frayne R., Lindley R.I., O'Brien J.T., Barkhof F., Benavente O.R., Black S.E., Brayne C., Breteler M., Chabriat H., DeCarli C., de Leeuw F.-E., Doubal F., Duering M., Fox N.C., Greenberg S., Hachinski V., Kilimann I., Mok V., Oostenbrugge R.V., Pantoni L., Speck O., Stephan B.C.M., Teipel S., Viswanathan A., Werring D., Chen C., Smith C., van Buchem M., Norrving B.o., Gorelick P.B., Dichgans M. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8) doi: 10.1016/S1474-4422(13)70124-8.

Source: PubMed

3
Sottoscrivi