Acute Effects of Cocoa Flavanols on Blood Pressure and Peripheral Vascular Reactivity in Type 2 Diabetes Mellitus and Essential Hypertension: A Protocol for an Acute, Randomized, Double-Blinded, Placebo-Controlled Cross-Over Trial

Anouk Tanghe, Bert Celie, Samyah Shadid, Ernst Rietzschel, Jos Op 't Roodt, Koen D Reesink, Elsa Heyman, Patrick Calders, Anouk Tanghe, Bert Celie, Samyah Shadid, Ernst Rietzschel, Jos Op 't Roodt, Koen D Reesink, Elsa Heyman, Patrick Calders

Abstract

Introduction: Patients with type 2 diabetes mellitus are at high risk to develop vascular complications resulting in high morbidity and mortality. Cocoa flavanols are promising nutraceuticals with possible beneficial vascular effects in humans. However, limited research is currently available on the vascular effects in a diabetic population with inconsistent results. Possible reasons for this inconsistency might be heterogeneity in the given intervention (dose per time and day, single dose vs. split-dose, placebo formula) and the studied population (blood pressure at baseline, duration of diabetes, use of vasoactive antihypertensive and antidiabetic drugs, sex). Therefore, we aimed to develop a randomized, double-blinded, placebo-controlled cross-over trial to investigate whether cocoa flavanols have an acute impact on blood pressure and vascular reactivity in patients with type 2 diabetes with and without arterial hypertension. Methods and Analysis: We will include participants in four groups: (i) patients with type 2 diabetes without arterial hypertension, (ii) patients with type 2 diabetes with arterial hypertension and 1 antihypertensive drug, (iii) non-diabetic participants with essential hypertension and 1 antihypertensive drug, and (iv) healthy controls. All participants will complete the same protocol on both testing days, consuming high-flavanol cocoa extract (790 mg flavanols) or placebo. Macrovascular endothelial function (flow-mediated dilation) and blood pressure will be measured before and after capsule ingestion. Forearm muscle vasoreactivity (near-infrared spectroscopy) and brachial artery blood flow (echo-doppler) will be assessed in response to a dynamic handgrip exercise test after capsule ingestion. Data will be analyzed with a random intercept model in mixed models. Clinical Trial Registration: www.Clinicaltrials.gov, identifier: NCT03722199.

Keywords: antihypertensive drugs; blood pressure; cocoa flavanols; muscular oxygenation; type 2 diabetes; vascular reactivity.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Tanghe, Celie, Shadid, Rietzschel, Op ‘t Roodt, Reesink, Heyman and Calders.

Figures

Figure 1
Figure 1
Flowchart. FMD, flow-mediated dilation test; capillary blood, finger prick to measure capillary glycaemia (only patients with T2DM).

References

    1. Corti R, Flammer AJ, Hollenberg NK, Lüscher TF. Cocoa and cardiovascular health. Circulation. (2009) 119:1433–41. 10.1161/CIRCULATIONAHA.108.827022
    1. Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C, et al. . Nitric-oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in-vivo. Circulation. (1995) 91:1314–9. 10.1161/01.CIR.91.5.1314
    1. Joannides R, Richard V, Haefeli WE, Linder L, Luscher TF, Thuillez C. Role of basal and stimulated release of nitric oxide in the regulation of radial artery caliber in humans. Hypertension. (1995) 26:327–31. 10.1161/01.HYP.26.2.327
    1. Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA. (1996) 93:9114–9. 10.1073/pnas.93.17.9114
    1. Takahashi M, Ikeda U, Masuyama J, Funayama H, Kano S, Shimada K. Nitric oxide attenuates adhesion molecule expression in human endothelial cells. Cytokine. (1996) 8:817–21. 10.1006/cyto.1996.0109
    1. Holman N, Young B, Gadsby R. Current prevalence of type 1 and type 2 diabetes in adults and children in the UK. Diabetic Med. (2015) 32:1119–20. 10.1111/dme.12791
    1. Bruno G, Runzo C, Cavallo-Perin P, Merletti F, Rivetti M, Pinach S, et al. . Incidence of type 1 and type 2 diabetes in adults aged 30–49 years: the population-based registry in the province of Turin, Italy. Diabetes Care. (2005) 28:2613–9. 10.2337/diacare.28.11.2613
    1. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Prac. (2014) 103:137–49. 10.1016/j.diabres.2013.11.002
    1. Honing ML, Morrison PJ, Banga JD, Stroes ES, Rabelink TJ. Nitric oxide availability in diabetes mellitus. Diabetes Metab Rev. (1998) 14:241–9. 10.1002/(SICI)1099-0895(1998090)14:3<241::AID-DMR216>;2-R
    1. Giacco F, Brownlee M, Schmidt AM. Oxidative stress and diabetic complications. Circ Res. (2010) 107:1058–70. 10.1161/CIRCRESAHA.110.223545
    1. Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions. Lancet. (2012) 380:601–10. 10.1016/S0140-6736(12)60987-8
    1. Koopmanschap M. Coping with type II diabetes: the patient's perspective. Diabetologia. (2002) 45:S21–2. 10.1007/s00125-002-0861-2
    1. Bahia LR, Araujo DV, Schaan BD, Dib SA, Negrato CA, Leao MP, et al. . The costs of type 2 diabetes mellitus outpatient care in the Brazilian public health system. Value Health. (2011) 14(5 Suppl. 1):S137–40. 10.1016/j.jval.2011.05.009
    1. Massi-Benedetti M. The cost of diabetes in Europe-type II: the CODE-2 study. Diabetologia. (2002) 45:S1–4. 10.1007/s00125-002-0860-3
    1. Hays NP, Galassetti PR, Coker RH. Prevention and treatment of type 2 diabetes: current role of lifestyle, natural product, and pharmacological interventions. Pharmacol Ther. (2008) 118:181–91. 10.1016/j.pharmthera.2008.02.003
    1. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. (2004) 79:727–47. 10.1093/ajcn/79.5.727
    1. Arts IC, van de Putte B, Hollman PC. Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J Agric Food Chem. (2000) 48:1746–51. 10.1021/jf000025h
    1. Lee KW, Kim YJ, Lee HJ, Lee CY. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem. (2003) 51:7292–5. 10.1021/jf0344385
    1. Hollenberg NK, Fisher ND, McCullough ML. Flavanols, the Kuna, cocoa consumption, and nitric oxide. J Am Soc Hypertens. (2009) 3:105–12. 10.1016/j.jash.2008.11.001
    1. McCullough ML, Chevaux K, Jackson L, Preston M, Martinez G, Schmitz HH, et al. . Hypertension, the Kuna, and the epidemiology of flavanols. J Cardiovasc Pharmacol. (2006) 47:S103–9. 10.1097/00005344-200606001-00003
    1. Chevaux KA, Jackson L, Villar ME, Mundt JA, Commisso JF, Adamson GE, et al. . Proximate, mineral and procyanidin content of certain foods and beverages consumed by the Kuna Amerinds of Panama. J Food Composition Anal. (2001) 14:553–63. 10.1006/jfca.2001.1027
    1. EFSA Panel on Dietetic Products Nutrition Allergies. Scientific Opinion on the substantiation of a health claim related to cocoa flavanols and maintenance of normal endothelium-dependent vasodilation pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J. (2012) 10:2809. 10.2903/j.efsa.2012.2809
    1. Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA, et al. . Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr. (2008) 88:38–50. 10.1093/ajcn/88.1.38
    1. Ried K, Fakler P, Stocks NP. Effect of cocoa on blood pressure. Cochrane Database Syst Rev. (2017) 4:CD008893. 10.1002/14651858.CD008893.pub3
    1. Grassi D, Necozione S, Lippi C, Croce G, Valeri L, Pasqualetti P, et al. . Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension. (2005) 46:398–405. 10.1161/01.HYP.0000174990.46027.70
    1. Grassi D, Lippi C, Necozione S, Desideri G, Ferri C. Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am J Clin Nutr. (2005) 81:611–4. 10.1093/ajcn/81.3.611
    1. Grassi D, Desideri G, Necozione S, Lippi C, Casale R, Properzi G, et al. . Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J Nutr. (2008) 138:1671–6. 10.1093/jn/138.9.1671
    1. Goya L, Martin MA, Sarriá B, Ramos S, Mateos R, Bravo L. Effect of cocoa and its flavonoids on biomarkers of inflammation: studies of cell culture, animals and humans. Nutrients. (2016) 8:212. 10.3390/nu8040212
    1. Bordeaux B, Yanek LR, Moy TF, White LW, Becker LC, Faraday N, et al. . Casual chocolate consumption and inhibition of platelet function. Prev Cardiol. (2007) 10:175–80. 10.1111/j.1520-037X.2007.06693.x
    1. Hermann F, Spieker LE, Ruschitzka F, Sudano I, Hermann M, Binggeli C, et al. . Dark chocolate improves endothelial and platelet function. Heart. (2006) 92:119–20. 10.1136/hrt.2005.063362
    1. Rein D, Lotito S, Holt RR, Keen CL, Schmitz HH, Fraga CG. Epicatechin in human plasma: in vivo determination and effect of chocolate consumption on plasma oxidation status. J Nutr. (2000) 130(8S Suppl.):2109S–14S. 10.1093/jn/130.8.2109S
    1. Wiswedel I, Hirsch D, Kropf S, Gruening M, Pfister E, Schewe T, et al. . Flavanol-rich cocoa drink lowers plasma F2-isoprostane concentrations in humans. Free Radical Biol Med. (2004) 37:411–21. 10.1016/j.freeradbiomed.2004.05.013
    1. Heiss C, Dejam A, Kleinbongard P, Schewe T, Sies H, Kelm M. Vascular effects of cocoa rich in flavan-3-ols. JAMA. (2003) 290:1030–1. 10.1001/jama.290.8.1030
    1. Heiss C, Kleinbongard P, Dejam A, Perré S, Schroeter H, Sies H, et al. . Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J Am College Cardiol. (2005) 46:1276–83. 10.1016/j.jacc.2005.06.055
    1. Actis-Goretta L, Ottaviani JI, Fraga CG. Inhibition of angiotensin converting enzyme activity by flavanol-rich foods. J Agric Food Chem. (2006) 54:229–34. 10.1021/jf052263o
    1. Persson IAL, Persson K, Hägg S, Andersson RGG. Effects of cocoa extract and dark chocolate on angiotensin-converting enzyme and nitric oxide in human endothelial cells and healthy volunteers-A nutrigenomics perspective. J Cardiovasc Pharmacol. (2011) 57:44–50. 10.1097/FJC.0b013e3181fe62e3
    1. Schroeter H, Heiss C, Spencer JP, Keen CL, Lupton JR, Schmitz HH. Recommending flavanols and procyanidins for cardiovascular health: current knowledge and future needs. Mol Aspects Med. (2010) 31:546–57. 10.1016/j.mam.2010.09.008
    1. Aprotosoaie AC, Miron A, Trifan A, Luca VS, Costache I-I. The cardiovascular effects of cocoa polyphenols-an overview. Diseases. (2016) 4:39. 10.3390/diseases4040039
    1. Kim J-a, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. (2006) 113:1888–904. 10.1161/CIRCULATIONAHA.105.563213
    1. Ayoobi N, Jafarirad S, Haghighizadeh MH, Jahanshahi A. Protective effect of dark chocolate on cardiovascular disease factors and body composition in type 2 diabetes: a parallel, randomized, clinical trial. Iranian Red Crescent Med J. (2017) 19:e21644. 10.5812/ircmj.21644
    1. Balzer J, Rassaf T, Heiss C, Kleinbongard P, Lauer T, Merx M, et al. . Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients: a double-masked, randomized, controlled trial. J Am College Cardiol. (2008) 51:2141–9. 10.1016/j.jacc.2008.01.059
    1. Curtis PJ, Potter J, Kroon PA, Wilson P, Dhatariya K, Sampson M, et al. . Vascular function and atherosclerosis progression after 1 y of flavonoid intake in statin-treated postmenopausal women with type 2 diabetes: a double-blind randomized controlled trial. Am J Clin Nutr. (2013) 97:936–42. 10.3945/ajcn.112.043745
    1. Dicks L, Kirch N, Gronwald D, Wernken K, Zimmermann BF, Helfrich HP, et al. . Regular intake of a usual serving size of flavanol-rich cocoa powder does not affect cardiometabolic parameters in stably treated patients with type 2 diabetes and hypertension-a double-blinded, randomized, placebo-controlled trial. Nutrients. (2018) 10:1435. 10.3390/nu10101435
    1. Mellor DD, Sathyapalan T, Kilpatrick ES, Beckett S, Atkin SL. High-cocoa polyphenol-rich chocolate improves HDL cholesterol in type 2 diabetes patients. Diabetic Med. (2010) 27:1318–21. 10.1111/j.1464-5491.2010.03108.x
    1. Rostami A, Khalili M, Haghighat N, Eghtesadi S, Shidfar F, Heidari I, et al. . High-cocoa polyphenol-rich chocolate improves blood pressure in patients with diabetes and hypertension. ARYA Atheroscl. (2015) 11:21–9.
    1. Basu A, Betts NM, Leyva MJ, Fu D, Aston CE, Lyons TJ. Acute cocoa supplementation increases postprandial HDL cholesterol and insulin in obese adults with type 2 diabetes after consumption of a high-fat breakfast. J Nutr. (2015) 145:2325–32. 10.3945/jn.115.215772
    1. Mellor DD, Madden LA, Smith KA, Kilpatrick ES, Atkin SL. High-polyphenol chocolate reduces endothelial dysfunction and oxidative stress during acute transient hyperglycaemia in type 2 diabetes: a pilot randomized controlled trial. Diabetic Med. (2013) 30:478–83. 10.1111/dme.12030
    1. Tanghe A, Heyman E, Wyngaert KV, Van Ginckel A, Celie B, Rietzschel E, et al. . Evaluation of blood pressure lowering effects of cocoa flavanols in diabetes mellitus: a systematic review and meta-analysis. J Functional Foods. (2021) 79:104399. 10.1016/j.jff.2021.104399
    1. Sudano I, Spieker LE, Hermann F, Flammer A, Corti R, Noll G, et al. . Protection of endothelial function: targets for nutritional and pharmacological interventions. J Cardiovasc Pharmacol. (2006) 47:S136–50. 10.1097/00005344-200606001-00008
    1. d'El-Rei J, Cunha AR, Burlá A, Burlá M, Oigman W, Neves MF, et al. . Characterisation of hypertensive patients with improved endothelial function after dark chocolate consumption. Int J Hypertens. (2013) 2013:985087. 10.1155/2013/985087
    1. de Jesus Romero-Prado MM, Curiel-Beltran JA, Miramontes-Espino MV, Cardona-Munoz EG, Rios-Arellano A, Balam-Salazar LB. Dietary flavonoids added to pharmacological antihypertensive therapy are effective in improving blood pressure. Basic Clin Pharmacol Toxicol. (2015) 117:57–64. 10.1111/bcpt.12360
    1. Flammer AJ, Hermann F, Sudano I, Spieker L, Hermann M, Cooper KA, et al. . Dark chocolate improves coronary vasomotion and reduces platelet reactivity. Circulation. (2007) 116:2376–82. 10.1161/CIRCULATIONAHA.107.713867
    1. Flammer AJ, Sudano I, Wolfrum M, Thomas R, Enseleit F, Periat D, et al. . Cardiovascular effects of flavanol-rich chocolate in patients with heart failure. Eur Heart J. (2012) 33:2172–80. 10.1093/eurheartj/ehr448
    1. Struijker-Boudier HA. From macrocirculation to microcirculation: benefits of preterax. Am J Hypertens. (2007) 20(S1):15S−8S. 10.1016/j.amjhyper.2007.04.013
    1. Association AD. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes−2019. Diabetes Care. (2019) 42(Suppl. 1):S13–28. 10.2337/dc19-S002
    1. Echeverri D, Montes FR, Cabrera M, Galán A, Prieto A. Caffeine's vascular mechanisms of action. Int J Vasc Med. (2010) 2010:834060. 10.1155/2010/834060
    1. Aprotosoaie AC, Luca SV, Miron A. Flavor chemistry of cocoa and cocoa products-an overview. Comprehens Rev Food Sci Food Safety. (2016) 15:73–91. 10.1111/1541-4337.12180
    1. Muniyappa R, Hall G, Kolodziej TL, Karne RJ, Crandon SK, Quon MJ. Cocoa consumption for 2 wk enhances insulin-mediated vasodilatation without improving blood pressure or insulin resistance in essential hypertension. Am J Clin Nutr. (2008) 88:1685–96. 10.3945/ajcn.2008.26457
    1. Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, et al. . (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci USA. (2006) 103:1024–9. 10.1073/pnas.0510168103
    1. Hagströmer M, Oja P, Sjöström M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. (2006) 9:755–62. 10.1079/PHN2005898
    1. de Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC. Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J Agric Food Chem. (2000) 48:5331–7. 10.1021/jf000549h
    1. Qiu S, Cai X, Yin H, Sun Z, Zügel M, Steinacker JM, et al. . Exercise training and endothelial function in patients with type 2 diabetes: a meta-analysis. Cardiovasc Diabetol. (2018) 17:64. 10.1186/s12933-018-0711-2
    1. Buscemi S, Re A, Batsis J, Arnone M, Mattina A, Cerasola G, et al. . Glycaemic variability using continuous glucose monitoring and endothelial function in the metabolic syndrome and in type 2 diabetes. Diabetic Med. (2010) 27:872–8. 10.1111/j.1464-5491.2010.03059.x
    1. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, et al. . The REDCap consortium: building an international community of software platform partners. J Biomed Informatics. (2019) 95:103208. 10.1016/j.jbi.2019.103208
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Informatics. (2009) 42:377–81. 10.1016/j.jbi.2008.08.010
    1. Monagas M, Khan N, Andres-Lacueva C, Casas R, Urpí-Sardà M, Llorach R, et al. . Effect of cocoa powder on the modulation of inflammatory biomarkers in patients at high risk of cardiovascular disease. Am J Clin Nutr. (2009) 90:1144–50. 10.3945/ajcn.2009.27716
    1. Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, et al. . Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circul Physiol. (2010) 300:H2–H12. 10.1152/ajpheart.00471.2010
    1. Doshi SN, Naka KK, Payne N, Jones CJ, Ashton M, Lewis MJ, et al. . Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide. Clin Sci. (2001) 101:629–35. 10.1042/cs1010629
    1. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, et al. . Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am College Cardiol. (2002) 39:257–65. 10.1016/S0735-1097(01)01746-6
    1. Celie B, Boone J, Van Coster R, Bourgois J. Reliability of near infrared spectroscopy (NIRS) for measuring forearm oxygenation during incremental handgrip exercise. Eur J Appl Physiol. (2012) 112:2369–74. 10.1007/s00421-011-2183-x
    1. Celie BM, Boone J, Dumortier J, Derave W, De Backer T, Bourgois JG. Possible influences on the interpretation of functional domain (FD) near-infrared spectroscopy (NIRS): An explorative study. Appl Spectrosc. (2016) 70:363–71. 10.1177/0003702815620562
    1. Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C, et al. . Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J Appl Physiol. (2003) 95:149–58. 10.1152/japplphysiol.00695.2002
    1. T'Joen V, Phlypo S, Bekaert S. Bimetra biobank: a high quality biobank facility to stimulate translational biomedical research. Open J Bioresour. (2018) 5:1–8. 10.5334/ojb.37
    1. Langlois MR, Delanghe JR, De Buyzere ML, Bernard DR, Ouyang J. Effect of haptoglobin on the metabolism of vitamin C. Am J Clin Nutr. (1997) 66:606–10. 10.1093/ajcn/66.3.606
    1. Migueles JH, Cadenas-Sanchez C, Ekelund U, Nyström CD, Mora-Gonzalez J, Löf M, et al. . Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. (2017) 47:1821–45. 10.1007/s40279-017-0716-0
    1. Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries JH, et al. . International consensus on use of continuous glucose monitoring. Diabetes Care. (2017) 40:1631–40. 10.2337/dc17-1600
    1. Donald AE, Halcox JP, Charakida M, Storry C, Wallace SM, Cole TJ, et al. . Methodological approaches to optimize reproducibility and power in clinical studies of flow-mediated dilation. J Am College Cardiol. (2008) 51:1959–64. 10.1016/j.jacc.2008.02.044
    1. Sorensen KE, Celermajer DS, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Thomas O, et al. . Non-invasive measurement of human endothelium dependent arterial responses: accuracy and reproducibility. Heart. (1995) 74:247–53. 10.1136/hrt.74.3.247
    1. van Mil AC, Greyling A, Zock PL, Geleijnse JM, Hopman MT, Mensink RP, et al. . Impact of volunteer-related and methodology-related factors on the reproducibility of brachial artery flow-mediated vasodilation: analysis of 672 individual repeated measurements. J Hypertens. (2016) 34:1738–45. 10.1097/HJH.0000000000001012

Source: PubMed

3
Sottoscrivi