Erythropoietin Improves Poor Outcomes in Preterm Infants with Intraventricular Hemorrhage

Juan Song, Yong Wang, Falin Xu, Huiqing Sun, Xiaoli Zhang, Lei Xia, Shan Zhang, Kenan Li, Xirui Peng, Bingbing Li, Yaodong Zhang, Wenqing Kang, Xiaoyang Wang, Changlian Zhu, Juan Song, Yong Wang, Falin Xu, Huiqing Sun, Xiaoli Zhang, Lei Xia, Shan Zhang, Kenan Li, Xirui Peng, Bingbing Li, Yaodong Zhang, Wenqing Kang, Xiaoyang Wang, Changlian Zhu

Abstract

Background: Intraventricular hemorrhage (IVH) is a common complication in preterm infants that has poor outcomes, especially in severe cases, and there are currently no widely accepted effective treatments. Erythropoietin has been shown to be neuroprotective in neonatal brain injury.

Objective: The objective of this study was to evaluate the protective effect of repeated low-dose recombinant human erythropoietin (rhEPO) in preterm infants with IVH.

Methods: This was a single-blinded prospective randomized controlled trial. Preterm infants ≤ 32 weeks gestational age who were diagnosed with IVH within 72 h after birth were randomized to receive rhEPO 500 IU/kg or placebo (equivalent volume of saline) every other day for 2 weeks. The primary outcome was death or neurological disability assessed at 18 months of corrected age.

Results: A total of 316 eligible infants were included in the study, with 157 in the rhEPO group and 159 in the placebo group. Although no significant differences in mortality (p = 0.176) or incidence of neurological disability (p = 0.055) separately at 18 months of corrected age were seen between the rhEPO and placebo groups, significantly fewer infants had poor outcomes (death and neurological disability) in the rhEPO group: 14.9 vs. 26.4%; odds ratio (OR) 0.398; 95% confidence interval (CI) 0.199-0.796; p = 0.009. In addition, the incidence of Mental Development Index scores of < 70 was lower in the rhEPO group than in the placebo group: 7.2 vs. 15.3%; OR 0.326; 95% CI 0.122-0.875; p = 0.026.

Conclusions: Treatment with repeated low-dose rhEPO improved outcomes in preterm infants with IVH.

Trial registration: The study was retrospectively registered on ClinicalTrials.gov on 16 April 2019 (NCT03914690).

Conflict of interest statement

Juan Song, Yong Wang, Falin Xu, Huiqing Sun, Xiaoli Zhang, Lei Xia, Shan Zhang, Kenan Li, Xirui Peng, Bingbing Li, Yaodong Zhang, Wenqing Kang, Xiaoyang Wang, and Changlian Zhu have no conflicts of interest that are directly relevant to the content of this article.

Figures

Fig. 1
Fig. 1
Study flow. Schematic flowchart showing the number of participants and the procedure of assigning patients to recombinant human erythropoietin or placebo and follow-up to 18 months of corrected age. Preterm infants with grade I–IV intraventricular hemorrhage were enrolled in the study. IVH intraventricular hemorrhage, rhEPO recombinant human erythropoietin

References

    1. Bolisetty S, Dhawan A, Abdel-Latif M, Bajuk B, Stack J, Lui K. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics. 2014;133(1):55–62. doi: 10.1542/peds.2013-0372.
    1. Szpecht D, Szymankiewicz M, Nowak I, Gadzinowski J. Intraventricular hemorrhage in neonates born before 32 weeks of gestation-retrospective analysis of risk factors. Childs Nerv Syst. 2016;32(8):1399–1404. doi: 10.1007/s00381-016-3127-x.
    1. Jiang S, Yan W, Li S, Zhang L, Zhang Y, Shah PS, et al. Mortality and morbidity in infants < 34 weeks’ gestation in 25 NICUs in China: A prospective cohort study. Front Pediatr. 2020;8:33. doi: 10.3389/fped.2020.00033.
    1. He L, Zhou W, Zhao X, Liu X, Rong X, Song Y. Development and validation of a novel scoring system to predict severe intraventricular hemorrhage in very low birth weight infants. Brain Dev. 2019;41(8):671–677. doi: 10.1016/j.braindev.2019.04.013.
    1. Garton T, Hua Y, Xiang J, Xi G, Keep RF. Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opin Ther Targets. 2017;21(12):1111–1122. doi: 10.1080/14728222.2017.1397628.
    1. Cizmeci MN, de Vries LS, Ly LG, van Haastert IC, Groenendaal F, Kelly EN, et al. Periventricular hemorrhagic infarction in very preterm infants: characteristic sonographic findings and association with neurodevelopmental outcome at age 2 years. J Pediatr. 2020;217(79–85):e1.
    1. Romantsik O, Calevo MG, Bruschettini M. Head midline position for preventing the occurrence or extension of germinal matrix-intraventricular hemorrhage in preterm infants. Cochrane Database Syst Rev. 2017;7:Cd012362.
    1. Whitelaw A. Periventricular hemorrhage: a problem still today. Early Hum Dev. 2012;88(12):965–969. doi: 10.1016/j.earlhumdev.2012.09.004.
    1. Ohlsson A, Aher SM. Early erythropoiesis-stimulating agents in preterm or low birth weight infants. Cochrane Database Syst Rev. 2020;2(2):Cd004863.
    1. Neubauer AP, Voss W, Wachtendorf M, Jungmann T. Erythropoietin improves neurodevelopmental outcome of extremely preterm infants. Ann Neurol. 2010;67(5):657–666.
    1. Fauchere JC, Dame C, Vonthein R, Koller B, Arri S, Wolf M, et al. An approach to using recombinant erythropoietin for neuroprotection in very preterm infants. Pediatrics. 2008;122(2):375–382. doi: 10.1542/peds.2007-2591.
    1. O'Gorman RL, Bucher HU, Held U, Koller BM, Huppi PS, Hagmann CF. Tract-based spatial statistics to assess the neuroprotective effect of early erythropoietin on white matter development in preterm infants. Brain. 2015;138(Pt 2):388–397. doi: 10.1093/brain/awu363.
    1. Ohls RK, Ehrenkranz RA, Das A, Dusick AM, Yolton K, Romano E, et al. Neurodevelopmental outcome and growth at 18 to 22 months' corrected age in extremely low birth weight infants treated with early erythropoietin and iron. Pediatrics. 2004;114(5):1287–1291. doi: 10.1542/peds.2003-1129-L.
    1. Zhu C, Kang W, Xu F, Cheng X, Zhang Z, Jia L, et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic–ischemic encephalopathy. Pediatrics. 2009;124(2):e218–e226. doi: 10.1542/peds.2008-3553.
    1. Robinson S, Conteh FS, Oppong AY, Yellowhair TR, Newville JC, Demerdash NE, et al. Extended combined neonatal treatment with erythropoietin plus melatonin prevents posthemorrhagic hydrocephalus of prematurity in rats. Front Cell Neurosci. 2018;12:322. doi: 10.3389/fncel.2018.00322.
    1. Juul SE, Beyer RP, Bammler TK, McPherson RJ, Wilkerson J, Farin FM. Microarray analysis of high-dose recombinant erythropoietin treatment of unilateral brain injury in neonatal mouse hippocampus. Pediatr Res. 2009;65(5):485–492. doi: 10.1203/PDR.0b013e31819d90c8.
    1. Juul SE, McPherson RJ, Bammler TK, Wilkerson J, Beyer RP, Farin FM. Recombinant erythropoietin is neuroprotective in a novel mouse oxidative injury model. Dev Neurosci. 2008;30(4):231–242. doi: 10.1159/000110348.
    1. Xiong Y, Mahmood A, Zhang Y, Meng Y, Zhang ZG, Qu C, et al. Effects of posttraumatic carbamylated erythropoietin therapy on reducing lesion volume and hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome in rats following traumatic brain injury. J Neurosurg. 2011;114(2):549–559. doi: 10.3171/2010.10.JNS10925.
    1. Reitmeir R, Kilic E, Kilic U, Bacigaluppi M, ElAli A, Salani G, et al. Post-acute delivery of erythropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity. Brain. 2011;134(Pt 1):84–99. doi: 10.1093/brain/awq344.
    1. Lee HS, Song J, Min K, Choi YS, Kim SM, Cho SR, et al. Short-term effects of erythropoietin on neurodevelopment in infants with cerebral palsy: a pilot study. Brain Dev. 2014;36(9):764–769. doi: 10.1016/j.braindev.2013.11.002.
    1. Wang X, Zhu C, Wang X, Gerwien JG, Schrattenholz A, Sandberg M, et al. The nonerythropoietic asialoerythropoietin protects against neonatal hypoxia–ischemia as potently as erythropoietin. J Neurochem. 2004;91(4):900–910. doi: 10.1111/j.1471-4159.2004.02769.x.
    1. Hierro-Bujalance C, Infante-Garcia C, Sanchez-Sotano D, Del Marco A, Casado-Revuelta A, Mengual-Gonzalez CM, et al. Erythropoietin improves atrophy, bleeding and cognition in the newborn intraventricular hemorrhage. Front Cell Dev Biol. 2020;8:571258. doi: 10.3389/fcell.2020.571258.
    1. Rüegger CM, Hagmann CF, Bührer C, Held L, Bucher HU, Wellmann S. Erythropoietin for the repair of cerebral injury in very preterm infants (EpoRepair) Neonatology. 2015;108(3):198–204. doi: 10.1159/000437248.
    1. Song J, Sun H, Xu F, Kang W, Gao L, Guo J, et al. Recombinant human erythropoietin improves neurological outcomes in very preterm infants. Ann Neurol. 2016;80(1):24–34. doi: 10.1002/ana.24677.
    1. Natalucci G, Latal B, Koller B, Ruegger C, Sick B, Held L, et al. Effect of early prophylactic high-dose recombinant human erythropoietin in very preterm infants on neurodevelopmental outcome at 2 years: a randomized clinical trial. JAMA. 2016;315(19):2079–2085. doi: 10.1001/jama.2016.5504.
    1. Bierer R, Peceny MC, Hartenberger CH, Ohls RK. Erythropoietin concentrations and neurodevelopmental outcome in preterm infants. Pediatrics. 2006;118(3):e635–e640. doi: 10.1542/peds.2005-3186.
    1. Ohls RK, Kamath-Rayne BD, Christensen RD, Wiedmeier SE, Rosenberg A, Fuller J, et al. Cognitive outcomes of preterm infants randomized to darbepoetin, erythropoietin, or placebo. Pediatrics. 2014;133(6):1023–1030. doi: 10.1542/peds.2013-4307.
    1. Ohls RK, Cannon DC, Phillips J, Caprihan A, Patel S, Winter S, et al. Preschool assessment of preterm infants treated with darbepoetin and erythropoietin. Pediatrics. 2016;137(3):e20153859. doi: 10.1542/peds.2015-3859.
    1. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92(4):529–534. doi: 10.1016/S0022-3476(78)80282-0.
    1. Patra K, Wilson-Costello D, Taylor HG, Mercuri-Minich N, Hack M. Grades I–II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment. J Pediatr. 2006;149(2):169–173. doi: 10.1016/j.jpeds.2006.04.002.
    1. Sun H, Song J, Kang W, Wang Y, Sun X, Zhou C, et al. Effect of early prophylactic low-dose recombinant human erythropoietin on retinopathy of prematurity in very preterm infants. J Transl Med. 2020;18(1):397. doi: 10.1186/s12967-020-02562-y.
    1. Wang Y, Song J, Sun H, Xu F, Li K, Nie C, et al. Erythropoietin prevents necrotizing enterocolitis in very preterm infants: a randomized controlled trial. J Transl Med. 2020;18(1):308. doi: 10.1186/s12967-020-02459-w.
    1. Ibrahim J, Bhandari V. The definition of bronchopulmonary dysplasia: an evolving dilemma. Pediatr Res. 2018;84(5):586–588. doi: 10.1038/s41390-018-0167-9.
    1. McAdams RM, McPherson RJ, Mayock DE, Juul SE. Outcomes of extremely low birth weight infants given early high-dose erythropoietin. J Perinatol. 2013;33(3):226–230. doi: 10.1038/jp.2012.78.
    1. Davis AS, Hintz SR, Goldstein RF, Ambalavanan N, Bann CM, Stoll BJ, et al. Outcomes of extremely preterm infants following severe intracranial hemorrhage. J Perinatol. 2014;34(3):203–208. doi: 10.1038/jp.2013.162.
    1. Nelin TD, Pena E, Giacomazzi T, Lee S, Logan JW, Moallem M, et al. Outcomes following indomethacin prophylaxis in extremely preterm infants in an all-referral NICU. J Perinatol. 2017;37(8):932–937. doi: 10.1038/jp.2017.71.
    1. Norman M, Piedvache A, Børch K, Huusom LD, Bonamy AE, Howell EA, et al. Association of short antenatal corticosteroid administration-to-birth intervals with survival and morbidity among very preterm infants: results from the EPICE cohort. JAMA Pediatr. 2017;171(7):678–686. doi: 10.1001/jamapediatrics.2017.0602.
    1. Juul SE, Comstock BA, Wadhawan R, Mayock DE, Courtney SE, Robinson T, et al. A randomized trial of erythropoietin for neuroprotection in preterm infants. N Engl J Med. 2020;382(3):233–243. doi: 10.1056/NEJMoa1907423.
    1. Juul SE, Pet GC. Erythropoietin and neonatal neuroprotection. Clin Perinatol. 2015;42(3):469–481. doi: 10.1016/j.clp.2015.04.004.
    1. Ley D, Romantsik O, Vallius S, Sveinsdottir K, Sveinsdottir S, Agyemang AA, et al. High presence of extracellular hemoglobin in the periventricular white matter following preterm intraventricular hemorrhage. Front Physiol. 2016;7:330. doi: 10.3389/fphys.2016.00330.
    1. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072. doi: 10.1016/j.cell.2012.03.042.
    1. Wang Y, Wu Y, Li T, Wang X, Zhu C. Iron metabolism and brain development in premature infants. Front Physiol. 2019;10:463. doi: 10.3389/fphys.2019.00463.
    1. Dommergues MA, Gallego J, Evrard P, Gressens P. Iron supplementation aggravates periventricular cystic white matter lesions in newborn mice. Eur J Paediatr Neurol. 1998;2(6):313–318. doi: 10.1016/S1090-3798(98)80006-8.
    1. Imamura T, Ariga H, Kaneko M, Watanabe M, Shibukawa Y, Fukuda Y, et al. Neurodevelopmental outcomes of children with periventricular leukomalacia. Pediatr Neonatol. 2013;54(6):367–372. doi: 10.1016/j.pedneo.2013.04.006.
    1. Wu Y, Song J, Wang Y, Wang X, Culmsee C, Zhu C. The potential role of ferroptosis in neonatal brain injury. Front Neurosci. 2019;13:115. doi: 10.3389/fnins.2019.00115.
    1. Gram M, Sveinsdottir S, Cinthio M, Sveinsdottir K, Hansson SR, Mörgelin M, et al. Extracellular hemoglobin—mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage. J Neuroinflamm. 2014;11:200. doi: 10.1186/s12974-014-0200-9.
    1. Nishimura K, Tokida M, Katsuyama H, Nakagawa H, Matsuo S. The effect of hemin-induced oxidative stress on erythropoietin production in HepG2 cells. Cell Biol Int. 2014;38(11):1321–1329. doi: 10.1002/cbin.10329.
    1. Juul SE, Mayock DE, Comstock BA, Heagerty PJ. Neuroprotective potential of erythropoietin in neonates; design of a randomized trial. Matern Health Neonatol Perinatol. 2015;1:27. doi: 10.1186/s40748-015-0028-z.
    1. Bi D, Chen M, Zhang X, Wang H, Xia L, Shang Q, et al. The association between sex-related interleukin-6 gene polymorphisms and the risk for cerebral palsy. J Neuroinflamm. 2014;11:100. doi: 10.1186/1742-2094-11-100.
    1. Charriaut-Marlangue C, Besson VC, Baud O. Sexually dimorphic outcomes after neonatal stroke and hypoxia–ischemia. Int J Mol Sci. 2017;19(1):61.
    1. Battarbee AN, Glover AV, Vladutiu CJ, Gyamfi-Bannerman C, Aliaga S, Manuck TA, et al. Sex-specific differences in late preterm neonatal outcome. Am J Perinatol. 2019;36(12):1223–1228. doi: 10.1055/s-0039-1683886.
    1. Li K, Li T, Wang Y, Xu Y, Zhang S, Culmsee C, et al. Sex differences in neonatal mouse brain injury after hypoxia–ischemia and adaptaquin treatment. J Neurochem. 2019;150(6):759–775. doi: 10.1111/jnc.14790.
    1. Zhu C, Sun Y, Gao J, Wang X, Plesnila N, Blomgren K. Inhaled nitric oxide protects males but not females from neonatal mouse hypoxia-ischemia brain injury. Transl Stroke Res. 2013;4(2):201–207. doi: 10.1007/s12975-012-0217-2.
    1. Al Mamun A, Yu H, Romana S, Liu F. Inflammatory responses are sex specific in chronic hypoxic–ischemic encephalopathy. Cell Transplant. 2018;27(9):1328–1339. doi: 10.1177/0963689718766362.
    1. Charriaut-Marlangue C, Leconte C, Csaba Z, Chafa L, Pansiot J, Talatizi M, et al. Sex differences in the effects of PARP inhibition on microglial phenotypes following neonatal stroke. Brain Behav Immun. 2018;73:375–389. doi: 10.1016/j.bbi.2018.05.022.
    1. Nelson LH, Peketi P, Lenz KM. Microglia regulate cell genesis in a sex-dependent manner in the neonatal hippocampus. Neuroscience. 2021;453:237–255. doi: 10.1016/j.neuroscience.2020.10.009.
    1. Iturri P, Bairam A, Soliz J. Efficient breathing at neonatal ages: a sex and epo-dependent issue. Respir Physiol Neurobiol. 2017;245:89–97. doi: 10.1016/j.resp.2016.12.004.
    1. Dey S, Cui Z, Gavrilova O, Zhang X, Gassmann M, Noguchi CT. Sex-specific brain erythropoietin regulation of mouse metabolism and hypothalamic inflammation. JCI Insight. 2020;5(5):e134061. doi: 10.1172/jci.insight.134061.
    1. Ohlsson A, Aher SM. Early erythropoiesis-stimulating agents in preterm or low birth weight infants. Cochrane Database Syst Rev. 2017;11:Cd004863.
    1. Natalucci G, Latal B, Koller B, Rüegger C, Sick B, Held L, et al. Effect of early prophylactic high-dose recombinant human erythropoietin in very preterm infants on neurodevelopmental outcome at 2 years: a randomized clinical trial. JAMA. 2016;315(19):2079–2085. doi: 10.1001/jama.2016.5504.
    1. Schneider JK, Gardner DK, Cordero L. Use of recombinant human erythropoietin and risk of severe retinopathy in extremely low-birth-weight infants. Pharmacotherapy. 2008;28(11):1335–1340. doi: 10.1592/phco.28.11.1335.
    1. Juul SE, McPherson RJ, Bauer LA, Ledbetter KJ, Gleason CA, Mayock DE. A phase I/II trial of high-dose erythropoietin in extremely low birth weight infants: pharmacokinetics and safety. Pediatrics. 2008;122(2):383–391. doi: 10.1542/peds.2007-2711.
    1. Roland EH, Hill A. Germinal matrix-intraventricular hemorrhage in the premature newborn: management and outcome. Neurol Clin. 2003;21(4):833–851. doi: 10.1016/S0733-8619(03)00067-7.
    1. Hack M, Wilson-Costello D, Friedman H, Taylor GH, Schluchter M, Fanaroff AA. Neurodevelopment and predictors of outcomes of children with birth weights of less than 1000 g: 1992–1995. Arch Pediatr Adolesc Med. 2000;154(7):725–731. doi: 10.1001/archpedi.154.7.725.
    1. Marlow N, Morris T, Brocklehurst P, Carr R, Cowan F, Patel N, et al. A randomised trial of granulocyte-macrophage colony-stimulating factor for neonatal sepsis: childhood outcomes at 5 years. Arch Dis Child Fetal Neonatal Ed. 2015;100(4):F320–F326. doi: 10.1136/archdischild-2014-307410.
    1. Volpe JJ. Commentary—do the negative results of the PENUT trial close the book on erythropoietin for premature infant brain? J Neonatal Perinatal Med. 2020;13(2):149–152. doi: 10.3233/NPM-200444.

Source: PubMed

3
Sottoscrivi