Role of Antioxidants and Natural Products in Inflammation

Palanisamy Arulselvan, Masoumeh Tangestani Fard, Woan Sean Tan, Sivapragasam Gothai, Sharida Fakurazi, Mohd Esa Norhaizan, S Suresh Kumar, Palanisamy Arulselvan, Masoumeh Tangestani Fard, Woan Sean Tan, Sivapragasam Gothai, Sharida Fakurazi, Mohd Esa Norhaizan, S Suresh Kumar

Abstract

Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.

Figures

Figure 1
Figure 1
Classification of inflammation categorized by duration and immune functions.
Figure 2
Figure 2
Acute inflammatory pathways and their activation process.
Figure 3
Figure 3
Steps involved in the chronic inflammatory processes and their consequences.
Figure 4
Figure 4
Chronic inflammation associated diseases/disorders due to longer term course of inflammation and various immune reactions.
Figure 5
Figure 5
Oxidative stress and inflammation: imbalance of antioxidants and free radicals.
Figure 6
Figure 6
Structures of compounds 1 and 2 isolated from A. fragrans (3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid).
Figure 7
Figure 7
Chemical structures of dihydromyricetin.
Figure 8
Figure 8
Chemical structure of acacetin (1), hispidulin (2), and diosmetin (3).
Figure 9
Figure 9
Chemical structure of fulgidic acid and pinellic acid isolated from rhizomes of C. rotundus.
Figure 10
Figure 10
Chemical structures of delphinidin 3-sambubioside (Dp3-Sam) and delphinidin (Dp).
Figure 11
Figure 11
Chemical structure of SE, IBSE, and IVSE.
Figure 12
Figure 12
Chemical structure of JEUD-38.
Figure 13
Figure 13
Degradation of matricine (1) to chamazulene (2) via chamazulene carboxylic acid.
Figure 14
Figure 14
Structure of saxifragin.
Figure 15
Figure 15
Cellular signaling inflammatory pathways and how the natural products targets inhibit the pathways.

References

    1. Schmid-Schönbein G. W. Analysis of inflammation. Annual Review of Biomedical Engineering. 2006;8:93–151. doi: 10.1146/annurev.bioeng.8.061505.095708.
    1. Henson P., Larsen G., Henson J., Newman S., Musson R., Leslie C. Resolution of pulmonary inflammation. Federation Proceedings. 1984;43(13):2799–2806.
    1. Markiewski M. M., Lambris J. D. The role of complement in inflammatory diseases from behind the scenes into the spotlight. American Journal of Pathology. 2007;171(3):715–727. doi: 10.2353/ajpath.2007.070166.
    1. Kobayashi H., Higashiura Y., Shigetomi H., Kajihara H. Pathogenesis of endometriosis: the role of initial infection and subsequent sterile inflammation (Review) Molecular Medicine Reports. 2014;9(1):9–15. doi: 10.3892/mmr.2013.1755.
    1. Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771–776. doi: 10.1016/j.cell.2010.03.006.
    1. Pecchi E., Dallaporta M., Jean A., Thirion S., Troadec J.-D. Prostaglandins and sickness behavior: old story, new insights. Physiology and Behavior. 2009;97(3-4):279–292. doi: 10.1016/j.physbeh.2009.02.040.
    1. Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846–852. doi: 10.1038/nature01320.
    1. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–435. doi: 10.1038/nature07201.
    1. Serhan C. N., Savill J. Resolution of inflammation: the beginning programs the end. Nature Immunology. 2005;6(12):1191–1197. doi: 10.1038/ni1276.
    1. Serhan C. N. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annual Review of Immunology. 2007;25:101–137. doi: 10.1146/annurev.immunol.25.022106.141647.
    1. Eaves-Pyles T., Allen C. A., Taormina J., et al. Escherichia coli isolated from a Crohn's disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. International Journal of Medical Microbiology. 2008;298(5-6):397–409. doi: 10.1016/j.ijmm.2007.05.011.
    1. Ferguson L. R. Chronic inflammation and mutagenesis. Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis. 2010;690(1-2):3–11. doi: 10.1016/j.mrfmmm.2010.03.007.
    1. Weber A., Boege Y., Reisinger F., Heikenwalder M. Chronic liver inflammation and hepatocellular carcinoma: persistence matters. Swiss Medical Weekly. 2011;141(4) doi: 10.4414/smw.2011.13197.13197
    1. Czaja A. J., Manns M. P. Advances in the diagnosis, pathogenesis, and management of autoimmune hepatitis. Gastroenterology. 2010;139(1):58–72.e4. doi: 10.1053/j.gastro.2010.04.053.
    1. Berasain C., Castillo J., Perugorria M. J., Latasa M. U., Prieto J., Avila M. A. Inflammation and liver cancer: new molecular links. Annals of the New York Academy of Sciences. 2009;1155:206–221. doi: 10.1111/j.1749-6632.2009.03704.x.
    1. Liaskou E., Wilson D. V., Oo Y. H. Innate immune cells in liver inflammation. Mediators of Inflammation. 2012;2012:21. doi: 10.1155/2012/949157.949157
    1. Schattenberg J. M., Schuchmann M., Galle P. R. Cell death and hepatocarcinogenesis: dysregulation of apoptosis signaling pathways. Journal of Gastroenterology and Hepatology. 2011;26(1):213–219. doi: 10.1111/j.1440-1746.2010.06582.x.
    1. Schattenberg J. M., Galle P. R., Schuchmann M. Apoptosis in liver disease. Liver International. 2006;26(8):904–911. doi: 10.1111/j.1478-3231.2006.01324.x.
    1. Iwaisako K., Brenner D. A., Kisseleva T. What's new in liver fibrosis? The origin of myofibroblasts in liver fibrosis. Journal of Gastroenterology and Hepatology. 2012;27(supplement 2):65–68. doi: 10.1111/j.1440-1746.2011.07002.x.
    1. Engler R., Schmid-Schönbein G., Pavelec R. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. The American Journal of Pathology. 1983;111(1):98–111.
    1. Schmid-Schönbein G. W., Takase S., Bergan J. J. New advances in the understanding of the pathophysiology of chronic venous insufficiency. Angiology. 2001;52(1, supplement):S27–S34. doi: 10.1177/000331970105200104.
    1. Schmid-Schönbein G. W., Hugli T. E. A new hypothesis for microvascular inflammation in shock and multiorgan failure: self-digestion by pancreatic enzymes. Microcirculation. 2005;12(1):71–82. doi: 10.1080/10739680590896009.
    1. Entman M. L., Michael L., Rossen R. D., et al. Inflammation in the course of early myocardial ischemia. The FASEB Journal. 1991;5(11):2529–2537.
    1. Anselmi A., Abbate A., Girola F., et al. Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: a review of evidence. European Journal of Cardio-Thoracic Surgery. 2004;25(3):304–311. doi: 10.1016/j.ejcts.2003.12.003.
    1. Suematsu M., Suzuki H., Delano F. A., Schmid-Schönbein G. W. The inflammatory aspect of the microcirculation in hypertension: oxidative stress, leukocytes/endothelial interaction, apoptosis. Microcirculation. 2002;9(4):259–276. doi: 10.1038/sj.mn.7800141.
    1. Stürmer T., Brenner H., Koenig W., Günther K.-P. Severity and extent of osteoarthritis and low grade systemic inflammation as assessed by high sensitivity C reactive protein. Annals of the Rheumatic Diseases. 2004;63(2):200–205. doi: 10.1136/ard.2003.007674.
    1. Benito M. J., Veale D. J., FitzGerald O., van den Berg W. B., Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Annals of the Rheumatic Diseases. 2005;64(9):1263–1267. doi: 10.1136/ard.2004.025270.
    1. Toker S., Shirom A., Shapira I., Berliner S., Melamed S. The association between burnout, depression, anxiety, and inflammation biomarkers: C-reactive protein and fibrinogen in men and women. Journal of Occupational Health Psychology. 2005;10(4):344–362. doi: 10.1037/1076-8998.10.4.344.
    1. Nicklas B. J., Ambrosius W., Messier S. P., et al. Diet-induced weight loss, exercise, and chronic inflammation in older, obese adults: a randomized controlled clinical trial. The American Journal of Clinical Nutrition. 2004;79(4):544–551.
    1. Calabro P., Chang D. W., Willerson J. T., Yeh E. T. H. Release of C-reactive protein in response to inflammatory cytokines by human adipocytes: linking obesity to vascular inflammation. Journal of the American College of Cardiology. 2005;46(6):1112–1113. doi: 10.1016/j.jacc.2005.06.017.
    1. Colbert L. H., Visser M., Simonsick E. M., et al. Physical activity, exercise, and inflammatory markers in older adults: findings from the health, aging and body composition study. Journal of the American Geriatrics Society. 2004;52(7):1098–1104. doi: 10.1111/j.1532-5415.2004.52307.x.
    1. Poyton R. O., Ball K. A., Castello P. R. Mitochondrial generation of free radicals and hypoxic signaling. Trends in Endocrinology and Metabolism. 2009;20(7):332–340. doi: 10.1016/j.tem.2009.04.001.
    1. Reuter S., Gupta S. C., Chaturvedi M. M., Aggarwal B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biology and Medicine. 2010;49(11):1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006.
    1. Coussens L. M., Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–867. doi: 10.1038/nature01322.
    1. Hussain S. P., Hofseth L. J., Harris C. C. Radical causes of cancer. Nature Reviews Cancer. 2003;3(4):276–285. doi: 10.1038/nrc1046.
    1. Federico A., Morgillo F., Tuccillo C., Ciardiello F., Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. International Journal of Cancer. 2007;121(11):2381–2386. doi: 10.1002/ijc.23192.
    1. Hussain S. P., Harris C. C. Inflammation and cancer: an ancient link with novel potentials. International Journal of Cancer. 2007;121(11):2373–2380. doi: 10.1002/ijc.23173.
    1. Tandon V. R., Verma S., Singh J., Mahajan A. Antioxidants and cardiovascular health. Journal of Medical Education & Research. 2005;7(2):115–118.
    1. Ravipati A. S., Zhang L., Koyyalamudi S. R., et al. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complementary and Alternative Medicine. 2012;12, article 173 doi: 10.1186/1472-6882-12-173.
    1. Subramanian S., Kumar S., Arulselvan A., Senthilkumar S. In vitro antibacterial and antifungal activities of ethanolic extract of aloe vera leaf gel. Journal of Plant Sciences. 2006;1(4):348–355. doi: 10.3923/jps.2006.348.355.
    1. Rajasekaran S., Sriram N., Arulselvan P., Subramanian S. Effect of Aloe vera leaf gel extract on membrane bound phosphatases and lysosomal hydrolases in rats with streptozotocin diabetes. Pharmazie. 2007;62(3):221–225. doi: 10.1691/ph.2007.3.6634.
    1. Wei W.-C., Lin S.-Y., Chen Y.-J., et al. Topical application of marine briarane-type diterpenes effectively inhibits 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and dermatitis in murine skin. Journal of Biomedical Science. 2011;18(1, article 94):13. doi: 10.1186/1423-0127-18-94.
    1. Wen C.-C., Shyur L.-F., Jan J.-T., et al. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. Journal of Traditional and Complementary Medicine. 2011;1(1):41–50. doi: 10.1016/s2225-4110(16)30055-4.
    1. Arulselvan P., Wen C.-C., Lan C.-W., Chen Y.-H., Wei W.-C., Yang N.-S. Dietary administration of scallion extract effectively inhibits colorectal tumor growth: cellular and molecular mechanisms in mice. PLoS ONE. 2012;7(9) doi: 10.1371/journal.pone.0044658.e44658
    1. Huang Y.-T., Wen C.-C., Chen Y.-H., et al. Dietary uptake of wedelia chinensis extract attenuates dextran sulfate sodium-induced colitis in mice. PLoS ONE. 2013;8(5) doi: 10.1371/journal.pone.0064152.e64152
    1. Arulselvan P., Ghofar H. A. A., Karthivashan G., Halim M. F. A., Ghafar M. S. A., Fakurazi S. Antidiabetic therapeutics from natural source: a systematic review. Biomedicine & Preventive Nutrition. 2014;4(4):607–617. doi: 10.1016/j.bionut.2014.07.009.
    1. Sellamuthu P. S., Arulselvan P., Fakurazi S., Kandasamy M. Beneficial effects of mangiferin isolated from Salacia chinensis on biochemical and hematological parameters in rats with streptozotocininduced diabetes. Pakistan Journal of Pharmaceutical Sciences. 2014;27(1):161–167.
    1. Tan W. S., Arulselvan P., Karthivashan G., Fakurazi S. Moringa oleifera flower extract suppresses the activation of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 macrophages via NF-κB pathway. Mediators of Inflammation. 2015;2015:11. doi: 10.1155/2015/720171.720171
    1. Gothai S., Arulselvan P., Tan W. S., Fakurazi S. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts. Journal of Intercultural Ethnopharmacology. 2016;5(1):1–6. doi: 10.5455/jice.20160201055629.
    1. Krishnaiah D., Sarbatly R., Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing. 2011;89(3):217–233. doi: 10.1016/j.fbp.2010.04.008.
    1. Gerber M., Boutron-Ruault M.-C., Hercberg S., Riboli E., Scalbert A., Siess M.-H. Food and cancer: state of the art about the protective effect of fruits and vegetables. Bulletin du Cancer. 2002;89(3):293–312.
    1. Bhatia S., Shukla R., Madhu S. V., Gambhir J. K., Prabhu K. M. Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy. Clinical Biochemistry. 2003;36(7):557–562. doi: 10.1016/S0009-9120(03)00094-8.
    1. Steer P., Millgård J., Sarabi D. M., et al. Cardiac and vascular structure and function are related to lipid peroxidation and metabolism. Lipids. 2002;37(3):231–236. doi: 10.1007/s11745-002-0885-3.
    1. Di Matteo V., Esposito E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Current Drug Targets-CNS & Neurological Disorders. 2003;2(2):95–107. doi: 10.2174/1568007033482959.
    1. Jiang Y., Wang M.-H. Different solvent fractions of acanthopanax senticosus harms exert antioxidant and anti-inflammatory activities and inhibit the human Kv1.3 channel. Journal of Medicinal Food. 2015;18(4):468–475. doi: 10.1089/jmf.2014.3182.
    1. Kim H.-Y., Hwang K. W., Park S.-Y. Extracts of Actinidia arguta stems inhibited LPS-induced inflammatory responses through nuclear factor-κB pathway in Raw 264.7 cells. Nutrition Research. 2014;34(11):1008–1016. doi: 10.1016/j.nutres.2014.08.019.
    1. Chen X., Miao J., Wang H., et al. The anti-inflammatory activities of Ainsliaea fragrans Champ. extract and its components in lipopolysaccharide-stimulated RAW264.7 macrophages through inhibition of NF-κB pathway. Journal of Ethnopharmacology. 2015;170:72–80. doi: 10.1016/j.jep.2015.05.004.
    1. Hou X. L., Tong Q., Wang W. Q., et al. Suppression of inflammatory responses by dihydromyricetin, a flavonoid from ampelopsis grossedentata, via inhibiting the activation of NF-κB and MAPK signaling pathways. Journal of Natural Products. 2015;78(7):1689–1696. doi: 10.1021/acs.jnatprod.5b00275.
    1. Qi S., Xin Y., Guo Y., et al. Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-κB signaling pathways. International Immunopharmacology. 2012;12(1):278–287. doi: 10.1016/j.intimp.2011.12.001.
    1. Chang H. R., Lee H. J., Ryu J.-H. Chalcones from angelica keiskei attenuate the inflammatory responses by suppressing nuclear translocation of NF-κB. Journal of Medicinal Food. 2014;17(12):1306–1313. doi: 10.1089/jmf.2013.3037.
    1. Oh Y.-C., Jeong Y. H., Kim T., Cho W.-K., Ma J. Y. Anti-inflammatory effect of Artemisiae annuae herba in lipopolysaccharide-stimulated RAW 264.7 Cells. Pharmacognosy Magazine. 2014;10(39):S588–S595. doi: 10.4103/0973-1296.139793.
    1. Patel N. K., Pulipaka S., Dubey S. P., Bhutani K. K. Pro-inflammatory cytokines and nitric oxide inhibitory constituents from Cassia occidentalis roots. Natural Product Communications. 2014;9(5):661–664.
    1. Lamichhane R., Kim S.-G., Poudel A., Sharma D., Lee K.-H., Jung H.-J. Evaluation of in vitro and in vivo biological activities of cheilanthes albomarginata clarke. BMC Complementary and Alternative Medicine. 2014;14, article 342 doi: 10.1186/1472-6882-14-342.
    1. Srisook K., Srisook E., Nachaiyo W., et al. Bioassay-guided isolation and mechanistic action of anti-inflammatory agents from Clerodendrum inerme leaves. Journal of Ethnopharmacology. 2015;165:94–102. doi: 10.1016/j.jep.2015.02.043.
    1. Akihisa T., Franzblau S. G., Ukiya M., et al. Antitubercular activity of triterpenoids from Asteraceae flowers. Biological and Pharmaceutical Bulletin. 2005;28(1):158–160. doi: 10.1248/bpb.28.158.
    1. Cho Y.-C., Ju A., Kim B. R., Cho S. Anti-inflammatory effects of Crataeva nurvala Buch. Ham. are mediated via inactivation of ERK but not NF-κB. Journal of Ethnopharmacology. 2015;162:140–147. doi: 10.1016/j.jep.2014.12.056.
    1. Shin J.-S., Hong Y., Lee H.-H., et al. Fulgidic acid isolated from the rhizomes of Cyperus rotundus suppresses LPS-induced iNOS, COX-2, TNF-α, and IL-6 expression by AP-1 inactivation in RAW264.7 macrophages. Biological and Pharmaceutical Bulletin. 2015;38(7):1081–1086. doi: 10.1248/bpb.b15-00186.
    1. Yang B.-Y., Guo R., Li T., et al. New anti-inflammatory withanolides from the leaves of Datura metel L. Steroids. 2014;87:26–34. doi: 10.1016/j.steroids.2014.05.003.
    1. de Oliveira R. G., Mahon C. P. A. N., Ascêncio P. G. M., Ascêncio S. D., Balogun S. O., Martins D. T. D. O. Evaluation of anti-inflammatory activity of hydroethanolic extract of Dilodendron bipinnatum Radlk. Journal of Ethnopharmacology. 2014;155(1):387–395. doi: 10.1016/j.jep.2014.05.041.
    1. Kim D. H., Kim M. E., Lee J. S. Inhibitory effects of extract from G. lanceolata on LPS-induced production of nitric oxide and IL-1β via down-regulation of MAPK in macrophages. Applied Biochemistry and Biotechnology. 2015;175(2):657–665. doi: 10.1007/s12010-014-1301-8.
    1. Sogo T., Terahara N., Hisanaga A., et al. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a hibiscus anthocyanin. BioFactors. 2015;41(1):58–65. doi: 10.1002/biof.1201.
    1. Chun J. M., Nho K. J., Kim H. S., Lee A. Y., Moon B. C., Kim H. K. An ethyl acetate fraction derived from Houttuynia cordata extract inhibits the production of inflammatory markers by suppressing NF-κB and MAPK activation in lipopolysaccharide-stimulated RAW 264.7 macrophages. BMC Complementary and Alternative Medicine. 2014;14, article 234 doi: 10.1186/1472-6882-14-234.
    1. Chen X., Tang S., Lee E., et al. IVSE, isolated from Inula japonica,suppresses LPS-induced NO production via NF-κB and MAPK inactivation in RAW264.7 cells. Life Sciences. 2015;124:8–15. doi: 10.1016/j.lfs.2015.01.008.
    1. Park H.-H., Kim M. J., Li Y., et al. Britanin suppresses LPS-induced nitric oxide, PGE2 and cytokine production via NF-κB and MAPK inactivation in RAW 264.7 cells. International Immunopharmacology. 2013;15(2):296–302. doi: 10.1016/j.intimp.2012.12.005.
    1. Wang X., Tang S.-A., Wang R., Qiu Y., Jin M., Kong D. Inhibitory effects of JEUD-38, a new sesquiterpene lactone from inula japonica thunb, on LPS-induced iNOS expression in RAW264.7 cells. Inflammation. 2015;38(3):941–948. doi: 10.1007/s10753-014-0056-2.
    1. Lee S. S., Tan N. H., Fung S. Y., Sim S. M., Tan C. S., Ng S. T. Anti-inflammatory effect of the sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden, the Tiger Milk mushroom. BMC Complementary and Alternative Medicine. 2014;14(1, article 359) doi: 10.1186/1472-6882-14-359.
    1. Song M. Y., Jung H. W., Kang S. Y., Kim K.-H., Park Y.-K. Anti-inflammatory effect of Lycii radicis in LPS-stimulated RAW 264.7 macrophages. The American Journal of Chinese Medicine. 2014;42(4):891–904. doi: 10.1142/s0192415x14500566.
    1. Flemming M., Kraus B., Rascle A., et al. Revisited anti-inflammatory activity of matricine in vitro: comparison with chamazulene. Fitoterapia. 2015;106:122–128. doi: 10.1016/j.fitote.2015.08.010.
    1. Gerritsen M. E., Carley W. W., Ranges G. E., et al. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. The American Journal of Pathology. 1995;147(2):278–292.
    1. Muangnoi C., Chingsuwanrote P., Praengamthanachoti P., Svasti S., Tuntipopipat S. Moringa oleifera pod inhibits inflammatory mediator production by lipopolysaccharide-stimulated RAW 264.7 murine macrophage cell lines. Inflammation. 2012;35(2):445–455. doi: 10.1007/s10753-011-9334-4.
    1. Lee H.-J., Jeong Y.-J., Lee T.-S., et al. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κB activation in RAW264.7 cells. The American Journal of Chinese Medicine. 2013;41(5):1109–1123. doi: 10.1142/s0192415x13500754.
    1. Adedapo A. A., Falayi O. O., Oyagbemi A. A. Evaluation of the analgesic, anti-inflammatory, anti-oxidant, phytochemical and toxicological properties of the methanolic leaf extract of commercially processed Moringa oleifera in some laboratory animals. Journal of Basic and Clinical Physiology and Pharmacology. 2015;26(5):491–499. doi: 10.1515/jbcpp-2014-0105.
    1. Fard M. T., Arulselvan P., Karthivashan G., Adam S. K., Fakurazi S. Bioactive extract from Moringa oleifera inhibits the pro-inflammatory mediators in Lipopolysaccharide stimulated macrophages. Pharmacognosy Magazine. 2015;11(supplement 4):S556–S563. doi: 10.4103/0973-1296.172961.
    1. Ozer L., El-On J., Golan-Goldhirsh A., Gopas J. Leishmania major: anti-leishmanial activity of Nuphar lutea extract mediated by the activation of transcription factor NF-κB. Experimental Parasitology. 2010;126(4):510–516. doi: 10.1016/j.exppara.2010.05.025.
    1. Turker H., Yıldırım A. B., Karakaş F. P. Sensitivity of bacteria isolated from fish to some medicinal plants. Turkish Journal of Fisheries and Aquatic Sciences. 2009;9(2):181–186. doi: 10.4194/trjfas.2009.0209.
    1. Yildirim A. B., Karakas F. P., Turker A. U. In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey. Asian Pacific Journal of Tropical Medicine. 2013;6(8):616–624. doi: 10.1016/S1995-7645(13)60106-6.
    1. Ozer J., Levi T., Golan-Goldhirsh A., Gopas J. Anti-inflammatory effect of a Nuphar lutea partially purified leaf extract in murine models of septic shock. Journal of Ethnopharmacology. 2015;161:86–91. doi: 10.1016/j.jep.2014.11.048.
    1. Oh Y.-C., Jeong Y. H., Ha J.-H., Cho W.-K., Ma J. Y. Oryeongsan inhibits LPS-induced production of inflammatory mediators via blockade of the NF-kappaB, MAPK pathways and leads to HO-1 induction in macrophage cells. BMC Complementary and Alternative Medicine. 2014;14, article 242 doi: 10.1186/1472-6882-14-242.
    1. Luitel D. R., Rokaya M. B., Timsina B., Münzbergová Z. Medicinal plants used by the Tamang community in the Makawanpur district of central Nepal. Journal of Ethnobiology and Ethnomedicine. 2014;10(1, article 5) doi: 10.1186/1746-4269-10-5.
    1. Hossen M. J., Baek K.-S., Kim E., et al. In vivo and in vitro anti-inflammatory activities of Persicaria chinensis methanolic extract targeting Src/Syk/NF-κB. Journal of Ethnopharmacology. 2015;159:9–16. doi: 10.1016/j.jep.2014.10.064.
    1. Hong J.-M., Kwon O.-K., Shin I.-S., et al. Anti-inflammatory activities of Physalis alkekengi var. franchetii extract through the inhibition of MMP-9 and AP-1 activation. Immunobiology. 2015;220(1):1–9. doi: 10.1016/j.imbio.2014.10.004.
    1. Isaka S., Cho K., Nakazono S., et al. Antioxidant and anti-inflammatory activities of porphyran isolated from discolored nori (Porphyra yezoensis) International Journal of Biological Macromolecules. 2015;74:68–75. doi: 10.1016/j.ijbiomac.2014.11.043.
    1. Cheon S.-Y., Chung K.-S., Jeon E., Nugroho A., Park H.-J., An H.-J. Anti-inflammatory activity of saxifragin via inhibition of NF-κB involves caspase-1 activation. Journal of Natural Products. 2015;78(7):1579–1585. doi: 10.1021/acs.jnatprod.5b00145.
    1. Chen Z., Liu Y.-M., Yang S., et al. Studies on the chemical constituents and anticancer activity of Saxifraga stolonifera (L) Meeb. Bioorganic & Medicinal Chemistry. 2008;16(3):1337–1344. doi: 10.1016/j.bmc.2007.10.072.
    1. Shin J.-S., Ryu S., Cho Y.-W., Kim H. J., Jang D. S., Lee K.-T. Inhibitory effects of α-chamigrenal, isolated from the fruits of schisandra chinensis, on lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in RAW 2647 macrophages. Planta Medica. 2014;80(8-9):655–661. doi: 10.1055/s-0034-1368544.
    1. Chuan-li L., Wei Z., Min W., et al. Polysaccharides from Smilax glabra inhibit the pro-inflammatory mediators via ERK1/2 and JNK pathways in LPS-induced RAW264. 7 cells. Carbohydrate Polymers. 2015;122:428–436. doi: 10.1016/j.carbpol.2014.11.035.

Source: PubMed

3
Sottoscrivi