Detection of SARS-CoV-2 from patient fecal samples by whole genome sequencing

Andreas Papoutsis, Thomas Borody, Siba Dolai, Jordan Daniels, Skylar Steinberg, Brad Barrows, Sabine Hazan, Andreas Papoutsis, Thomas Borody, Siba Dolai, Jordan Daniels, Skylar Steinberg, Brad Barrows, Sabine Hazan

Abstract

Background: SARS-CoV-2 has been detected not only in respiratory secretions, but also in stool collections. Here were sought to identify SARS-CoV-2 by enrichment next-generation sequencing (NGS) from fecal samples, and to utilize whole genome analysis to characterize SARS-CoV-2 mutational variations in COVID-19 patients.

Results: Study participants underwent testing for SARS-CoV-2 from fecal samples by whole genome enrichment NGS (n = 14), and RT-PCR nasopharyngeal swab analysis (n = 12). The concordance of SARS-CoV-2 detection by enrichment NGS from stools with RT-PCR nasopharyngeal analysis was 100%. Unique variants were identified in four patients, with a total of 33 different mutations among those in which SARS-CoV-2 was detected by whole genome enrichment NGS.

Conclusion: These results highlight the potential viability of SARS-CoV-2 in feces, its ongoing mutational accumulation, and its possible role in fecal-oral transmission. This study also elucidates the advantages of SARS-CoV-2 enrichment NGS, which may be a key methodology to document complete viral eradication. Trial registration ClinicalTrials.gov, NCT04359836, Registered 24 April 2020, https://ichgcp.net/clinical-trials-registry/NCT04359836?term=NCT04359836&draw=2&rank=1 ).

Keywords: COVID-19; Coronavirus; Fecal–oral transmission; NGS; SARS-CoV-2.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Mapping outcomes of patient NGS data against the SARS-CoV-2 Wuhan-Hu-1 (MN90847.3) complete genome. The x-axis depicts the genomic coordinates and the y-axis represents the read depth at specific loci

References

    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
    1. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017.
    1. Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967–1976. doi: 10.1056/NEJMoa030747.
    1. Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953–1966. doi: 10.1056/NEJMoa030781.
    1. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–1820. doi: 10.1056/NEJMoa1211721.
    1. “Coronavirus.” World Health Organization, World Health Organization, 15 July 2020, .
    1. Johns Hopkins University. Coronavirus Resource Center. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 15 July 2020, .
    1. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus_infected Pneumonia in Wuhan. China JAMA. 2020 doi: 10.1001/jama.2020.1585.
    1. Tahamtan A, Ardebili A. Real-Time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev Molecular Diagnostics. 2020;20(5):453–454. doi: 10.1080/14737159.2020.1757437.
    1. Gudbjartsson D, et al. Spread of SARS-CoV-2 in the Icelandic Population. N Engl J Med. 2020;382(24):2302–2315. doi: 10.1056/nejmoa2006100.
    1. Wikramaratna P, et al. Estimating False-Negative Detection Rate of SARS-CoV-2 by RT-PCR. MedRxiv. 2020 doi: 10.1101/2020.04.05.20053355.
    1. Cohen A, Kessel B. False positives in reverse transcription PCR testing for SARS-CoV-2. MedRxiv. 2020 doi: 10.1101/2020.04.26.20080911.
    1. Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19); Disease. 2020 2020
    1. Kakodkar, Pramath, et al. A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). Cureus, 2020, doi: 10.7759/cureus.7560.
    1. Wang X-W. Excretion and detection of SARS coronavirus and its nucleic acid from digestive system. World J Gastroenterol. 2005;11(28):4390. doi: 10.3748/wjg.v11.i28.4390.
    1. Parasa S, et al. Prevalence of gastrointestinal symptoms and fecal viral shedding in patients with coronavirus disease 2019. JAMA Network Open. 2020 doi: 10.1001/jamanetworkopen.2020.11335.
    1. Zhang B, Liu S, Dong Y, Zhang L, Zong Q, Zou Y, Zhang S. Positive rectal swabs in young patients recovered from coronavirus disease 2019 (COVID-19) J Infect. 2020;13:37. doi: 10.1016/j.jinf.2020.04.023.
    1. Chen L, Lou J, Bai Y, et al. COVID-19 disease with positive fecal and negative pharyngeal and sputum viral tests. Am J Gastroenterol. 2020 doi: 10.14309/ajg.0000000000000610.
    1. Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biole Rev. 2005;69:635–664. doi: 10.1128/MMBR.69.4.635-664.2005.
    1. Scoeman D, Fielding BC. Coronavirus enveloped protein: current knowledge. Virol J. 2019;16:69. doi: 10.1186/s12985-019-1182-0.
    1. Zumla A, Chan J, Azhar E, et al. Coronaviruses—drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15:327–347. doi: 10.1038/nrd.2015.37.
    1. Zhao L, et al. Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe. 2012;11(6):607–616. doi: 10.1016/j.chom.2012.04.011.
    1. Belshaw R, et al. The evolution of genome compression and genomic novelty in RNA viruses. Genome Res. 2007;17(10):1496–1504. doi: 10.1101/gr.6305707.
    1. Fehr A, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Coronaviruses Methods Molecular Biol. 2015 doi: 10.1007/978-1-4939-2438-7_1.
    1. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual Rev Virol. 2016;3(1):237–261. doi: 10.1146/annurev-virology110615-042301.
    1. Shang J, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221–224. doi: 10.1038/s41586-020-2179-y.
    1. Yang N, Shen H. Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19. Int J Biol Sci. 2020;16(10):1724–1731. doi: 10.7150/ijbs.45498.
    1. Degtyarev M, De Maziere A, Orr C, Lin J, Lee BB, Tien JY, et al. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol. 2008;183:101–116. doi: 10.1083/jcb.200801099.
    1. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell res. 2020.
    1. Arshad S, Kilgore P, Chaudhry Z, et al. Treatment with Hydroxychloroquine, Azithromycin, and Combination in Patients Hospitalized with COVID-19. Int J Infect Dis. 2020 doi: 10.1016/j.jijid.2020.06.099.
    1. Lagier JC, Matthieu M, Gautret P, Colson P, Cortaredona S, et al. Outcomes of 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Marseille, France: A retrospective analysis. Travel Med Infect Dis. 2020 doi: 10.1016/j.tmaid.2020.101791.
    1. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72–73. doi: 10.5582/bst.2020.01047.
    1. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020;105949.
    1. Million M, Lagier JC, Gautret P, et al. Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, 29 France. Travel Med Infect Dis. 2020;5:101738. doi: 10.1016/j.tmaid.2020.101738.
    1. Yu B, Wang DW, Li C. Hydroxychloroquine application is associated with a decreased mortality in critically ill patients with COVID-19. medRxiv. 2020. doi:10.1101/2020.04.27.20073379
    1. Chen Z, Hu J, Zhang Z, Jiang S, Han S, Yan D, Zhuang R, Hu B, Zhang Z. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv. 2020. doi: 10.1101/2020.03.22.20040758.
    1. Huang M, Tang T, Pang P, Li M, Ma R, Lu J, Shu J, You Y, Chen B, Liang J, Hong Z, Chen H, Kong L, Qin D, Pei D, Xia J, Jiang S, Shan H. Treating COVID-19 with Chloroquine. 2020. J Mol Cell Biol. doi: 10.1093/jmcb/mjaa014.
    1. Geleris J, Sun Y, Platt J, et al. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020.
    1. Chen Y, et al. The Presence of SARS-CoV-2 RNA in the Feces of COVID-19 Patients. J Med Virol. 2020;92(7):833–840. doi: 10.1002/jmv.25825.
    1. Wu Y, et al. Prolonged Presence of SARS-CoV-2 Viral RNA in Fecal Samples. Lancet Gastroenterol Hepatol. 2020;5(5):434–435. doi: 10.1016/s2468-1253(20)30083-2.

Source: PubMed

3
Sottoscrivi