Electrically guided versus imaging-guided implant of the left ventricular lead in cardiac resynchronization therapy: a study protocol for a double-blinded randomized controlled clinical trial (ElectroCRT)

Charlotte Stephansen, Anders Sommer, Mads Brix Kronborg, Jesper Møller Jensen, Kirsten Bouchelouche, Jens Cosedis Nielsen, Charlotte Stephansen, Anders Sommer, Mads Brix Kronborg, Jesper Møller Jensen, Kirsten Bouchelouche, Jens Cosedis Nielsen

Abstract

Background: Cardiac resynchronization therapy (CRT) is an established treatment in patients with heart failure and prolonged QRS duration where a biventricular pacemaker is implanted to achieve faster activation and more synchronous contraction of the left ventricle (LV). Despite the convincing effect of CRT, 30-40% of patients do not respond. Among the most important correctable causes of non-response to CRT is non-optimal LV lead position.

Methods: We will enroll 122 patients in this patient-blinded and assessor-blinded, randomized, clinical trial aiming to investigate if implanting the LV lead guided by electrical mapping towards the latest LV activation as compared with imaging-guided implantation, causes an excess increase in left ventricular (LV) ejection fraction (LVEF). The patients are randomly assigned to either the intervention group: preceded by cardiac computed tomography of the cardiac venous anatomy, the LV lead is placed according to the latest LV activation in the coronary sinus (CS) branches identified by systematic electrical mapping of the CS at implantation and post-implant optimization of the interventricular pacing delay; or patients are assigned to the control group: placement of the LV lead guided by cardiac imaging. The LV lead is targeted towards the latest mechanical LV activation as identified by echocardiography and outside myocardial scar as identified by myocardial perfusion (MP) imaging. The primary endpoint is change in LVEF at 6-month follow up (6MFU) as compared with baseline measured by two-dimensional echocardiography. Secondary endpoints include relative percentage reduction in LV end-systolic volume, all-cause mortality, hospitalization for heart failure, and a clinical combined endpoint of response to CRT at 6MFU defined as the patient being alive, not hospitalized for heart failure, and experiencing improvement in NYHA functional class or/and > 10% increase in 6-minute walk test.

Discussion: We assume an absolute increase in LVEF of 12% in the intervention group versus 8% in the control group. If an excess increase in LVEF can be achieved by LV lead implantation guided by electrical mapping, this study supports the conduct of larger trials investigating the impact of this strategy for LV-lead implantation on clinical outcomes in patients treated with CRT.

Trial registration: ClinicalTrials.gov, NCT02346097 . Registered on 12 January 2015. Patients were enrolled between 16 February 2015 and 13 December 2017.

Keywords: CRT; Cardiac imaging; Cardiac resynchronization therapy; Electrical mapping; Heart failure; LVEF; Left ventricular ejection fraction; Left ventricular lead placement; QLV.

Conflict of interest statement

Ethics approval and consent to participate

The study protocol has been approved by The Central Denmark Region Committees on Health Research Ethics (case number 1–10–72-230-14) (Additional file 1) and by the Danish Data Protection Agency (case number 1–16–02-622-14). All patients give informed written consent prior to enrolment in the study.

Consent for publication

Not applicable as images were anonymized.

Competing interests

CS has attended a conference supported by St Jude Medical. JCO is supported by a grant from the Novo Nordisk Foundation (NNF16OC0018658). MBK has received a speaker’s fee from Biotronik. The other authors have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Consort diagram of the study course. 6MWT, 6-minute walk test; AV, atrioventricular; CRT, cardiac resynchronization therapy; CT, computed tomography; LV, left ventricular; LVEF, left ventricular ejection fraction; MLHFQ, Minnesota Living with Heart Failure Questionnaire; MP, myocardial perfusion; NYHA, New York Heart Association; QoL, quality of life; VVd, interventricular pacing delay
Fig. 2
Fig. 2
Control group: pre-implant imaging obtained to guide implantation of the left ventricular (LV) lead. a Echocardiographic LV short-axis view of the basal (left) and mid-LV imaging plane (right) each divided into six anatomical segments. Numbers indicate time to peak radial strain in milliseconds (ms). b Baseline cardiac computed tomography (CT) images in three-dimensional 3D reconstruction illustrating cardiac venous anatomy. Posterior (left) and lateral (right) view of LV. c Baseline cardiac CT image in the mid-LV multiplanar reformatted short-axis view illustrating cardiac venous anatomy. d Rubidium positron emission tomography (Rb-PET) myocardial perfusion (MP) imaging, LV 17-segment bulls-eye plot. Numbers indicate percentage of tracer-uptake; < 50% is considered as transmural scar tissue. AIV, anterior interventricular vein; Ant, anterior; Ant-Sept, antero-septal; CS, coronary sinus; Inf, inferior; LAD, left anterior descending artery; Lat, lateral; LMA, left marginal artery (circumflex artery branch); LMV, left marginal vein; MCV, middle cardiac vein; PDA, posterior descending artery (right coronary artery branch); PLA, posterolateral artery; Post, posterior; PV, posterior vein; RCA, right coronary artery; RV, right ventricle; Sept, septal
Fig. 3
Fig. 3
Intervention group: electrical mapping. The local electrical activation delay is measured as time in milliseconds (ms) from QRS onset in the surface 12-lead electrocardiogram (ECG) to the maximum voltage change over time recorded in the local LV electrogram (EGM), reflecting the near-field activation of the myocardium according to the LV lead (QLV interval). The figure shows three examples of QLV measurements with the LV lead in a basal, mid, and apical position, exhibiting the longest QLV interval in the apical position. For simplicity, only the surface leads V2 and V6 and the local LV EGM (Pace 1–2) are shown
Fig. 4
Fig. 4
SPIRIT figure of the ElectroCRT study protocol. ECG, electrocardiogram; NYHA, New York Heart Association; MLHFQ, Minnesota Living with Heart Failure Questionnaire; 6MWT, 6-minute walk test; Rb-PET MP, rubidium positron emission tomography myocardial perfusion imaging; CT, computed tomography; VV, interventricular; AV, atrioventricular; LV, left ventricular; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume, CRT, cardiac resynchronization therapy; 6MFU, 6-month follow up; QoL, quality of life; Nt Pro-BNP, N-terminal prohormone of brain natriuretic peptide, LVEDV, left ventricular end-diastolic volume

References

    1. Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346(24):1845–1853. doi: 10.1056/NEJMoa013168.
    1. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350(21):2140–2150. doi: 10.1056/NEJMoa032423.
    1. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–1549. doi: 10.1056/NEJMoa050496.
    1. European Society of Cardiology (ESC) European Heart Rhythm Association (EHRA) Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, et al. ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA) Europace. 2013;15(8):1070–1118. doi: 10.1093/europace/eut206.
    1. Kirkfeldt R. E., Johansen J. B., Nohr E. A., Jorgensen O. D., Nielsen J. C. Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark. European Heart Journal. 2013;35(18):1186–1194. doi: 10.1093/eurheartj/eht511.
    1. Kronborg MB, Mortensen PT, Kirkfeldt RE, Nielsen JC. Very long term follow-up of cardiac resynchronization therapy: clinical outcome and predictors of mortality. Eur J Heart Fail. 2008;10(8):796–801. doi: 10.1016/j.ejheart.2008.06.013.
    1. Yu CM, Sanderson JE, Gorcsan J., 3rd Echocardiography, dyssynchrony, and the response to cardiac resynchronization therapy. Eur Heart J. 2010;31(19):2326–2337. doi: 10.1093/eurheartj/ehq263.
    1. Mullens W, Grimm RA, Verga T, Dresing T, Starling RC, Wilkoff BL, et al. Insights from a cardiac resynchronization optimization clinic as part of a heart failure disease management program. J Am Coll Cardiol. 2009;53(9):765–773. doi: 10.1016/j.jacc.2008.11.024.
    1. Khan FZ, Virdee MS, Palmer CR, Pugh PJ, O'Halloran D, Elsik M, et al. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial. J Am Coll Cardiol. 2012;59(17):1509–1518. doi: 10.1016/j.jacc.2011.12.030.
    1. Sommer Anders, Kronborg Mads Brix, Nørgaard Bjarne Linde, Poulsen Steen Hvitfeldt, Bouchelouche Kirsten, Böttcher Morten, Jensen Henrik Kjaerulf, Jensen Jesper Møller, Kristensen Jens, Gerdes Christian, Mortensen Peter Thomas, Nielsen Jens Cosedis. Multimodality imaging-guided left ventricular lead placement in cardiac resynchronization therapy: a randomized controlled trial. European Journal of Heart Failure. 2016;18(11):1365–1374. doi: 10.1002/ejhf.530.
    1. Saba S, Marek J, Schwartzman D, Jain S, Adelstein E, White P, et al. Echocardiography-guided left ventricular lead placement for cardiac resynchronization therapy: results of the Speckle Tracking Assisted Resynchronization Therapy for Electrode Region trial. Circ Heart Fail. 2013;6(3):427–434. doi: 10.1161/CIRCHEARTFAILURE.112.000078.
    1. Gold MR, Birgersdotter-Green U, Singh JP, Ellenbogen KA, Yu Y, Meyer TE, et al. The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy. Eur Heart J. 2011;32(20):2516–2524. doi: 10.1093/eurheartj/ehr329.
    1. Kandala J, Upadhyay GA, Altman RK, Parks KA, Orencole M, Mela T, et al. QRS morphology, left ventricular lead location, and clinical outcome in patients receiving cardiac resynchronization therapy. Eur Heart J. 2013;34(29):2252–2262. doi: 10.1093/eurheartj/eht123.
    1. Kronborg MB, Nielsen JC, Mortensen PT. Electrocardiographic patterns and long-term clinical outcome in cardiac resynchronization therapy. Europace. 2010;12(2):216–222. doi: 10.1093/europace/eup364.
    1. Tamborero D, Vidal B, Tolosana JM, Sitges M, Berruezo A, Silva E, et al. Electrocardiographic versus echocardiographic optimization of the interventricular pacing delay in patients undergoing cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2011;22(10):1129–1134. doi: 10.1111/j.1540-8167.2011.02085.x.
    1. Tamborero D, Mont L, Sitges M, Silva E, Berruezo A, Vidal B, et al. Optimization of the interventricular delay in cardiac resynchronization therapy using the QRS width. Am J Cardiol. 2009;104(10):1407–1412. doi: 10.1016/j.amjcard.2009.07.006.
    1. Sommer A, Kronborg MB, Poulsen SH, Bottcher M, Norgaard BL, Bouchelouche K, et al. Empiric versus imaging guided left ventricular lead placement in cardiac resynchronization therapy (ImagingCRT): study protocol for a randomized controlled trial. Trials. 2013;14:113–6215–14-113. doi: 10.1186/1745-6215-14-113.
    1. WMA: Declaration of Helsinki - ethical principles for medical research involving human subjects. .
    1. The Criteria Committee of the New York Heart Association . Nomenclature and criteria for diagnosis and diseases of the heart and great vessels. Boston: Little Brown; 1964.
    1. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–117. doi: 10.1164/ajrccm.166.1.at1102.
    1. Rector Thomas S., Tschumperlin Linda K., Kubo Spencer H., Bank Alan J., Francis Gary S., McDonald Kenneth M., Keeler Carol A., Silver Marc A. Use of the living with heart failure questionnaire to ascertain patients' perspectives on improvement in quality of life versus risk of drug-induced death. Journal of Cardiac Failure. 1995;1(3):201–206. doi: 10.1016/1071-9164(95)90025-X.
    1. Rector TS, Anand IS, Cohn JN. Relationships between clinical assessments and patients’ perceptions of the effects of heart failure on their quality of life. J Card Fail. 2006;12(2):87–92. doi: 10.1016/j.cardfail.2005.10.002.
    1. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2(5):358–367. doi: 10.1016/S0894-7317(89)80014-8.
    1. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–542. doi: 10.1161/hc0402.102975.
    1. Murphy RT, Sigurdsson G, Mulamalla S, Agler D, Popovic ZB, Starling RC, et al. Tissue synchronization imaging and optimal left ventricular pacing site in cardiac resynchronization therapy. Am J Cardiol. 2006;97(11):1615–1621. doi: 10.1016/j.amjcard.2005.12.054.
    1. vom Dahl J, Muzik O, Wolfe ER, Jr, Allman C, Hutchins G, Schwaiger M. Myocardial rubidium-82 tissue kinetics assessed by dynamic positron emission tomography as a marker of myocardial cell membrane integrity and viability. Circulation. 1996;93(2):238–245. doi: 10.1161/01.CIR.93.2.238.
    1. Gorcsan J, 3rd, Abraham T, Agler DA, Bax JJ, Derumeaux G, Grimm RA, et al. Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting–a report from the American Society of Echocardiography Dyssynchrony Writing Group endorsed by the Heart Rhythm Society. J Am Soc Echocardiogr. 2008;21(3):191–213. doi: 10.1016/j.echo.2008.01.003.
    1. Liang Y, Yu H, Zhou W, Xu G, Sun YI, Liu R, et al. Left ventricular lead placement targeted at the latest activated site guided by electrophysiological mapping in coronary sinus branches improves response to cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2015;26(12):1333–1339. doi: 10.1111/jce.12771.
    1. Behar JM, Claridge S, Jackson T, Sieniewicz B, Porter B, Webb J, et al. The role of multi modality imaging in selecting patients and guiding lead placement for the delivery of cardiac resynchronization therapy. Expert Rev Cardiovasc Ther. 2017;15(2):93–107. doi: 10.1080/14779072.2016.1252674.
    1. Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008;117(20):2608–2616. doi: 10.1161/CIRCULATIONAHA.107.743120.
    1. Ypenburg C, Schalij MJ, Bleeker GB, Steendijk P, Boersma E, Dibbets-Schneider P, et al. Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. Eur Heart J. 2007;28(1):33–41. doi: 10.1093/eurheartj/ehl379.
    1. Delgado V, van Bommel RJ, Bertini M, Borleffs CJ, Marsan NA, Arnold CT, et al. Relative merits of left ventricular dyssynchrony, left ventricular lead position, and myocardial scar to predict long-term survival of ischemic heart failure patients undergoing cardiac resynchronization therapy. Circulation. 2011;123(1):70–78. doi: 10.1161/CIRCULATIONAHA.110.945345.
    1. Anagnostopoulos C, Georgakopoulos A, Pianou N, Nekolla SG. Assessment of myocardial perfusion and viability by positron emission tomography. Int J Cardiol. 2013;167(5):1737–1749. doi: 10.1016/j.ijcard.2012.12.009.
    1. Qayyum AA, Hasbak P, Larsson HB, Christensen TE, Ghotbi AA, Mathiasen AB, et al. Quantification of myocardial perfusion using cardiac magnetic resonance imaging correlates significantly to rubidium-82 positron emission tomography in patients with severe coronary artery disease: a preliminary study. Eur J Radiol. 2014;83(7):1120–1128. doi: 10.1016/j.ejrad.2014.04.004.
    1. Sommer A., Kronborg M. B., Norgaard B. L., Gerdes C., Mortensen P. T., Nielsen J. C. Left and right ventricular lead positions are imprecisely determined by fluoroscopy in cardiac resynchronization therapy: a comparison with cardiac computed tomography. Europace. 2014;16(9):1334–1341. doi: 10.1093/europace/euu056.
    1. Solomon SD, Foster E, Bourgoun M, Shah A, Viloria E, Brown MW, et al. Effect of cardiac resynchronization therapy on reverse remodeling and relation to outcome: multicenter automatic defibrillator implantation trial: cardiac resynchronization therapy. Circulation. 2010;122(10):985–992. doi: 10.1161/CIRCULATIONAHA.110.955039.
    1. Strauss DG, Selvester RH, Wagner GS. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am J Cardiol. 2011;107:927–934. doi: 10.1016/j.amjcard.2010.11.010.

Source: PubMed

3
Sottoscrivi