A randomized controlled trial on a multicomponent intervention for overweight school-aged children - Copenhagen, Denmark

Nina Majlund Harder-Lauridsen, Nina Marie Birk, Mathias Ried-Larsen, Anders Juul, Lars Bo Andersen, Bente Klarlund Pedersen, Rikke Krogh-Madsen, Nina Majlund Harder-Lauridsen, Nina Marie Birk, Mathias Ried-Larsen, Anders Juul, Lars Bo Andersen, Bente Klarlund Pedersen, Rikke Krogh-Madsen

Abstract

Background: Obesity amongst children is a growing problem worldwide. In contrast to adults, little is known on the effects of controlled weight loss on components of the metabolic syndrome in children. The primary aim of the study was to evaluate the effects of a 20-week exercise and diet guidance intervention on body mass index (BMI) in a group of overweight children. Our hypothesis was an observed reduction in BMI and secondarily in body fat content, insulin insensitivity, and other components of the metabolic syndrome in the intervention group.

Methods: School children from Copenhagen were randomly allocated to an intervention group (n = 19) or a control group (n = 19). Anthropometric assessment, whole body dual-energy X-ray absorptiometry scan, two hours oral glucose tolerance test, steps measured by pedometer, and fitness tests were measured at baseline and at 20 weeks.

Results: Thirty-seven children (30 girls) participated at baseline, aged 8.7 ± 0.9 years with a BMI of 21.8 ± 3.7 kg/m2 (mean ± SD), and 36 children completed the study. The intervention group decreased their BMI (the intervention effect is the difference in change between the groups adjusted for the respective baseline values (DELTA) = -2.0 kg/m2, 95% CI: -2.5; -1.5, P <0.001), total body mass (DELTA = -4.0 kg, 95% CI: -4.9; -3.0, P <0.001), and fat mass (DELTA = -3.3 kg, 95% CI: -4.2; -2.7, P <0.001) compared to the control group after the intervention. The intervention group displayed decreased waist, hip and waist-to-height ratio (WHtR) (all three variables; P <0.001), area under curve for plasma insulin (P <0.05), and increased mean and minimum steps/day (P <0.05 and P <0.01, respectively).

Conclusions: The multicomponent intervention had significant favorable effects on BMI, weight, WHtR, mean and minimum steps/day, and fat mass. In addition, similar beneficial metabolic effects were found in the children as shown in adults, e.g. increase in peripheral insulin sensitivity.

Trial registration: Clinicaltrials.gov Identifier number NCT01660789.

Figures

Figure 1
Figure 1
Design of the randomized controlled trial. CONSORT 2010 Flow Diagram [34] showing the number of children invited, enrolled, allocated, at Follow-Up, and in the analyses. *Children (age 7–10 years) at inclusion time in Høje Taastrup Municipality who were identified as overweight or obese by the ‘SundSkoleNettet’/‘The Healthy Schools Network’. **Children (age 7–10 years) at inclusion time who participated in the early evening information meetings.
Figure 2
Figure 2
The glucose metabolism measured by oral glucose tolerance test. The area under curve is shown as bar graphs, while the response over time is shown as curves for plasma insulin (A) and glucose (B), respectively. P values are representing the intervention effects (the difference in change between the groups) adjusted for the respective baseline values (95% confidence intervals as error bars on bar graphs and Standard Error of the Mean as error bars on curves). ★, P <0.05; ns, not significant.
Figure 3
Figure 3
Physical activity measured by pedometer. Weighted mean steps per day (A) and mean minimum steps registered on the least active single day (B) registered by Pedometer. P values are representing the intervention effects (the difference in change between the groups) adjusted for the respective baseline values (95% Confidence intervals as error bars). ★, P <0.05; ★★, P <0.01.

References

    1. WORLD HEALTH ORGANIZATION . Prioritizing areas for action in the field of population-based prevention of CHILDHOOD OBESITY. 2012.
    1. Pedersen BK. Muscles and their myokines. J Exp Biol. 2011;214:337–346. doi: 10.1242/jeb.048074.
    1. Baker JL, Olsen LW, Sorensen TI. Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med. 2007;357:2329–2337. doi: 10.1056/NEJMoa072515.
    1. Juhola J, Magnussen CG, Viikari JS, Kahonen M, Hutri-Kahonen N, Jula A, Lehtimaki T, Akerblom HK, Pietikainen M, Laitinen T, Jokinen E, Taittonen L, Raitakari OT, Juonala M. Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. J Pediatr. 2011;159:584–590. doi: 10.1016/j.jpeds.2011.03.021.
    1. Andersen LB, Harro M, Sardinha LB, Froberg K, Ekelund U, Brage S, Anderssen SA. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study) Lancet. 2006;368:299–304. doi: 10.1016/S0140-6736(06)69075-2.
    1. Andersen LB. Physical activity, fitness and health in children. Scand J Med Sci Sports. 2011;21:155–156. doi: 10.1111/j.1600-0838.2011.01302.x.
    1. Bays HE. “Sick fat,” metabolic disease, and atherosclerosis. Am J Med. 2009;122:S26–S37. doi: 10.1016/j.amjmed.2008.10.015.
    1. Tanha T, Wollmer P, Thorsson O, Karlsson MK, Linden C, Andersen LB, Dencker M. Lack of physical activity in young children is related to higher composite risk factor score for cardiovascular disease. Acta Paediatr. 2011;100:717–721. doi: 10.1111/j.1651-2227.2011.02226.x.
    1. Krogh-Madsen R, Thyfault JP, Broholm C, Mortensen OH, Olsen RH, Mounier R, Plomgaard P, Van HG, Booth FW, Pedersen BK. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity. J Appl Physiol. 2010;108:1034–1040. doi: 10.1152/japplphysiol.00977.2009.
    1. Berenson GS. Childhood risk factors predict adult risk associated with subclinical cardiovascular disease. The Bogalusa Heart Study. Am J Cardiol. 2002;90:3L–7L. doi: 10.1016/S0002-9149(02)02953-3.
    1. Neovius M, Rossner SM, Vagstrand K, von Hausswolff-Juhlin YL, Hoffstedt J, Ekelund U. Adiposity measures as indicators of metabolic risk factors in adolescents. Obes Facts. 2009;2:294–301. doi: 10.1159/000229308.
    1. Caballero B. The global epidemic of obesity: an overview. Epidemiol Rev. 2007;29:1–5. doi: 10.1093/epirev/mxm012.
    1. Parsons TJ, Power C, Logan S, Summerbell CD. Childhood predictors of adult obesity: a systematic review. Int J Obes Relat Metab Disord. 1999;23(Suppl 8):S1–S107.
    1. European Commission . Diabesity - a world wide challenge. 2012.
    1. WORLD HEALTH ORGANIZATION . The challenge of obesity in the WHO European Region and the strategies for response. 2007.
    1. Berenson GS. Health consequences of obesity. Pediatr Blood Cancer. 2012;58:117–121. doi: 10.1002/pbc.23373.
    1. Oude LH, Baur L, Jansen H, Shrewsbury VA, O’Malley C, Stolk RP, Summerbell CD. The Cochrane Library. 2009. Interventions for treating obesity in children.
    1. de Silva-Sanigorski AM, Bell AC, Kremer P, Nichols M, Crellin M, Smith M, Sharp S, De GF, Carpenter L, Boak R, Robertson N, Swinburn BA. Reducing obesity in early childhood: results from Romp & Chomp, an Australian community-wide intervention program. Am J Clin Nutr. 2010;91:831–840. doi: 10.3945/ajcn.2009.28826.
    1. Romon M, Lommez A, Tafflet M, Basdevant A, Oppert JM, Bresson JL, Ducimetiere P, Charles MA, Borys JM. Downward trends in the prevalence of childhood overweight in the setting of 12-year school- and community-based programmes. Public Health Nutr. 2009;12:1735–1742. doi: 10.1017/S1368980008004278.
    1. Nysom K, Molgaard C, Hutchings B, Michaelsen KF. Body mass index of 0 to 45-y-old Danes: reference values and comparison with published European reference values. Int J Obes Relat Metab Disord. 2001;25:177–184. doi: 10.1038/sj.ijo.0801515.
    1. Ministry of Food AaFDVaFA . The Official Dietary Guidelines. 2014.
    1. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7:284–294. doi: 10.1111/j.2047-6310.2012.00064.x.
    1. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–576. doi: 10.1542/peds.114.2.S2.555.
    1. Andersen LB, Andersen TE, Andersen E, Anderssen SA. An intermittent running test to estimate maximal oxygen uptake: the Andersen test. J Sports Med Phys Fitness. 2008;48:434–437.
    1. Craig ME, Hattersley A, Donaghue KC. Definition, epidemiology and classification of diabetes in children and adolescents. Pediatr Diabetes. 2009;10(Suppl 12):3–12. doi: 10.1111/j.1399-5448.2009.00568.x.
    1. Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics. 2005;115:e500–e503. doi: 10.1542/peds.2004-1921.
    1. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27:1487–1495. doi: 10.2337/diacare.27.6.1487.
    1. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22:1462–1470. doi: 10.2337/diacare.22.9.1462.
    1. Andersson AM, Juul A, Petersen JH, Muller J, Groome NP, Skakkebaek NE. Serum inhibin B in healthy pubertal and adolescent boys: relation to age, stage of puberty, and follicle-stimulating hormone, luteinizing hormone, testosterone, and estradiol levels. J Clin Endocrinol Metab. 1997;82:3976–3981.
    1. Sehested A, Juul AA, Andersson AM, Petersen JH, Jensen TK, Muller J, Skakkebaek NE. Serum inhibin A and inhibin B in healthy prepubertal, pubertal, and adolescent girls and adult women: relation to age, stage of puberty, menstrual cycle, follicle-stimulating hormone, luteinizing hormone, and estradiol levels. J Clin Endocrinol Metab. 2000;85:1634–1640.
    1. Sorensen K, Aksglaede L, Petersen JH, Leffers H, Juul A. The exon 3 deleted growth hormone receptor gene is associated with small birth size and early pubertal onset in healthy boys. J Clin Endocrinol Metab. 2010;95:2819–2826. doi: 10.1210/jc.2009-2484.
    1. Sorensen K, Aksglaede L, Petersen JH, Andersson AM, Juul A. Serum IGF1 and insulin levels in girls with normal and precocious puberty. Eur J Endocrinol. 2012;166:903–910. doi: 10.1530/EJE-12-0106.
    1. Twisk J, Proper K. Evaluation of the results of a randomized controlled trial: how to define changes between baseline and follow-up. J Clin Epidemiol. 2004;57:223–228. doi: 10.1016/j.jclinepi.2003.07.009.
    1. Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomised trials. Lancet. 2001;357:1191–1194. doi: 10.1016/S0140-6736(00)04337-3.
    1. Foster GD, Sherman S, Borradaile KE, Grundy KM, Vander Veur SS, Nachmani J, Karpyn A, Kumanyika S, Shults J. A policy-based school intervention to prevent overweight and obesity. Pediatrics. 2008;121:e794–e802. doi: 10.1542/peds.2007-1365.
    1. Nielsen TR, Gamborg M, Fonvig CE, Kloppenborg J, Hvidt KN, Ibsen H, Holm JC. Changes in lipidemia during chronic care treatment of childhood obesity. Child Obes. 2012;8:533–541.
    1. Allemand-Jander LD. Clinical diagnosis of metabolic and cardiovascular risks in overweight children: early development of chronic diseases in the obese child. Int J Obes (Lond) 2010;34(Suppl 2):S32–S36. doi: 10.1038/ijo.2010.237.
    1. Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiol Rev. 1994;74:761–811.
    1. Fonvig CE, Bille DS, Chabanova E, Nielsen TR, Thomsen HS, Holm JC. Muscle fat content and abdominal adipose tissue distribution investigated by magnetic resonance spectroscopy and imaging in obese children and youths. Pediatr Rep. 2012;4:e11. doi: 10.4081/pr.2012.e11.
    1. Krogh-Madsen R, Pedersen M, Solomon TP, Knudsen SH, Hansen LS, Karstoft K, Lehrskov-Schmidt L, Pedersen KK, Thomsen C, Holst JJ, Pedersen BK. Normal physical activity obliterates the deleterious effects of a high-caloric intake. J Appl Physiol. 2014;116(3):231–239. doi: 10.1152/japplphysiol.00155.2013.
    1. Maher V, O’Dowd M, Carey M, Markham C, Byrne A, Hand E, Mc ID. Association of central obesity with early Carotid intima-media thickening is independent of that from other risk factors. Int J Obes (Lond) 2009;33:136–143. doi: 10.1038/ijo.2008.254.
    1. Mokha JS, Srinivasan SR, Dasmahapatra P, Fernandez C, Chen W, Xu J, Berenson GS. Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: the Bogalusa Heart Study. BMC Pediatr. 2010;10:73.
    1. Yusuf S, Anand S. Body-mass index, abdominal adiposity, and cardiovascular risk. Lancet. 2011;378:226–227. doi: 10.1016/S0140-6736(11)61120-3.
    1. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, Lang CC, Rumboldt Z, Onen CL, Lisheng L, Tanomsup S, Wangai P, Jr, Razak F, Sharma AM, Anand SS. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case–control study. Lancet. 2005;366:1640–1649. doi: 10.1016/S0140-6736(05)67663-5.
    1. Ding EL, Song Y, Manson JE, Hunter DJ, Lee CC, Rifai N, Buring JE, Gaziano JM, Liu S. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N Engl J Med. 2009;361:1152–1163. doi: 10.1056/NEJMoa0804381.
    1. Sorensen K, Aksglaede L, Munch-Andersen T, Aachmann-Andersen NJ, Petersen JH, Hilsted L, Helge JW, Juul A. Sex hormone-binding globulin levels predict insulin sensitivity, disposition index, and cardiovascular risk during puberty. Diabetes Care. 2009;32:909–914. doi: 10.2337/dc08-1618.
    1. Agirbasli M, Agaoglu NB, Orak N, Caglioz H, Ocek T, Poci N, Salaj A, Maya S. Sex hormones and metabolic syndrome in children and adolescents. Metabolism. 2009;58:1256–1262. doi: 10.1016/j.metabol.2009.03.024.
    1. Gonzalez-Suarez C, Worley A, Grimmer-Somers K, Dones V. School-based interventions on childhood obesity: a meta-analysis. Am J Prev Med. 2009;37:418–427. doi: 10.1016/j.amepre.2009.07.012.
    1. I’Allemand D, Wiegand S, Reinehr T, Muller J, Wabitsch M, Widhalm K, Holl R. Cardiovascular risk in 26,008 European overweight children as established by a multicenter database. Obesity (Silver Spring) 2008;16:1672–1679. doi: 10.1038/oby.2008.259.
    1. Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40. doi: 10.1186/1479-5868-7-40.
    1. Lara-Castro C, Garvey WT. Intracellular lipid accumulation in liver and muscle and the insulin resistance syndrome. Endocrinol Metab Clin North Am. 2008;37:841–856. doi: 10.1016/j.ecl.2008.09.002.
    1. Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda ) 2013;28:330–358.
    1. Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131:242–256. doi: 10.1016/j.cell.2007.10.004.
    1. Kynde I, Heitmann BL, Bygbjerg IC, Andersen LB, Helge JW. Childhood hypo-adiponectinaemia but not hyper-leptinaemia is associated with insulin insensitivity 6 years later. Pediatr Diabetes. 2010;11:195–202. doi: 10.1111/j.1399-5448.2009.00556.x.
    1. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–1350. doi: 10.1056/NEJM200105033441801.
    1. Karstoft K, Winding K, Knudsen SH, Nielsen JS, Thomsen C, Pedersen BK, Solomon TP. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes Care. 2013;36:228–236. doi: 10.2337/dc12-0658.
Pre-publication history
    1. The pre-publication history for this paper can be accessed here:

Source: PubMed

3
Sottoscrivi