Plasma apolipoprotein concentrations and incident diabetes in subjects with prediabetes

Mikaël Croyal, Matthieu Wargny, Kevin Chemello, Chloé Chevalier, Valentin Blanchard, Edith Bigot-Corbel, Gilles Lambert, Cédric Le May, Samy Hadjadj, Bertrand Cariou, Mikaël Croyal, Matthieu Wargny, Kevin Chemello, Chloé Chevalier, Valentin Blanchard, Edith Bigot-Corbel, Gilles Lambert, Cédric Le May, Samy Hadjadj, Bertrand Cariou

Abstract

Background: The identification of circulating biomarkers associated with the risk of type 2 diabetes (T2D) is useful for improving the current prevention strategies in the most at-risk patients. Here, we aimed to investigate the association of plasma apolipoprotein concentrations in prediabetes subjects with the incidence of new-onset T2D during follow-up.

Methods: In the IT-DIAB prospective study, 307 participants with impaired fasting glucose levels (fasting plasma glucose [FPG]: 110-125 mg/dL) were followed yearly for 5 years. The onset of T2D was defined as a first FPG value ≥ 126 mg/dL during follow-up. Apolipoprotein (apo)A-I, A-II, A-IV, B100, C-I, C-II, C-III, C-IV, D, E, F, H, J, L1, M, and (a) plasma concentrations were determined by mass spectrometry. Correlations between apolipoproteins and metabolic parameters at baseline were assessed by Spearman's coefficients. Kaplan-Meier curves were drawn using a ternary approach based on terciles and incident T2D. The association between plasma apolipoproteins concentrations and the incidence of T2D was determined using Cox proportional-hazards models.

Results: During a median follow-up of 5-year, 115 participants (37.5%) developed T2D. After adjustment for age, sex, body mass index, FPG, HbA1c, and statin use, the plasma levels of apoC-I, apoC-II, apoC-III, apoE, apoF, apoH, apoJ, and apoL1 were positively associated with a high risk for T2D. After further adjustment for plasma triglycerides, only apoE (1 SD natural-log-transformed hazard ratio: 1.28 [95% confidence interval: 1.06; 1.54]; p = 0.010), apoF (1.22 [1.01; 1.48]; p = 0.037), apoJ (1.24 [1.03; 1.49]; p = 0.024), and apoL1 (1.26 [1.05; 1.52]; p = 0.014) remained significantly associated with the onset of T2D. Kaplan-Meier survival curves also showed that the lower third of plasma apoE levels (< 5.97 mg/dL) was significantly associated with a lower risk of conversion to T2D (log-rank test, p = 0.002) compared to the middle and upper thirds.

Conclusions: The plasma apoE levels are positively associated with the risk of T2D in prediabetes subjects, independently of traditional risk factors. The possible associations of apoF, apoJ, and apoL1 with T2D risk also pave the way for further investigations. Trial registration This trial was registered at clinicaltrials.gov as NCT01218061 and NCT01432509.

Keywords: Apolipoprotein E; Apolipoproteins; IT-Diab study; New-onset diabetes; Type 2 diabetes.

Conflict of interest statement

There are no competing interests related to this work to disclose.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flow chart of the IT-DIAB study
Fig. 2
Fig. 2
Spearman correlations between plasma apolipoprotein concentrations and biochemical parameters in IT-DIAB participants without statin treatment at baseline. BMI: body mass index; FPG: Fasting Plasma Glucose; HOMA-β: Homeostatic Model Assessment of Insulin beta-cell function; HOMA-IR: Homeostatic Model Assessment of Insulin Resistance; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol; WHR: Waist/hip circumference ratio
Fig. 3
Fig. 3
Association between plasma apolipoproteins and plasma lipids at baseline and the incidence of new-onset diabetes during follow-up (Cox models based on the proportional hazards assumption). Hazard ratios (HRs) are calculated per 1 SD after natural-log transformation. Red dots indicate significance with p < 0.05. Model 1: not adjusted (univariate). Model 2: adjusted for baseline values of age, sex, body mass index, fasting plasma glucose, and HbA1c. Model 3: model 2 with additional adjustment for the use of statins or fibrates. Model 4: model 3 with additional adjustment for triglycerides (TG). TC: total cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol
Fig. 4
Fig. 4
Survival curves for new-onset diabetes in the IT-DIAB cohort according to the baseline apoE, apoF, apoJ, and apoL1 plasma concentrations. The groups were created according to terciles. ApoE, tercile 1: 5.97 mg/dL; tercile 2: 8.06 mg/dL. ApoF, tercile 1: 0.63 mg/dL; tercile 2: 1.08 mg/dL. ApoJ, tercile 1: 7.07 mg/dL; tercile 2: 8.91 mg/dL. ApoL1, tercile 1: 0.96 mg/dL; tercile 2: 1.25 mg/dL

References

    1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843.
    1. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives. Nat Rev Endocrinol. 2011;8:228–236.
    1. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93:137–188.
    1. Ferreira JP, Lamiral Z, Xhaard C, Duarte K, Bresso E, Devignes M-D, et al. Circulating plasma proteins and new-onset diabetes in a population-based study: proteomic and genomic insights from the STANISLAS cohort. Eur J Endocrinol. 2020;183:285–295.
    1. Athyros VG, Doumas M, Imprialos KP, Stavropoulos K, Georgianou E, Katsimardou A, et al. Diabetes and lipid metabolism. Horm Athens Greece. 2018;17:61–67.
    1. Backholer K, Peeters A, Herman WH, Shaw JE, Liew D, Ademi Z, et al. Diabetes prevention and treatment strategies: are we doing enough? Diabetes Care. 2013;36:2714–2719.
    1. Brahimaj A, Ligthart S, Ikram MA, Hofman A, Franco OH, Sijbrands EJG, et al. Serum levels of apolipoproteins and incident type 2 diabetes: a prospective cohort study. Diabetes Care. 2017;40:346–351.
    1. Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017;13:572–587.
    1. Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJP, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–2207.
    1. Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet Lond Engl. 2010;375:735–742.
    1. Kohli P, Waters DD, Nemr R, Arsenault BJ, Messig M, DeMicco DA, et al. Risk of new-onset diabetes and cardiovascular risk reduction from high-dose statin therapy in pre-diabetics and non-pre-diabetics: an analysis from TNT and IDEAL. J Am Coll Cardiol. 2015;65:402–404.
    1. Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375:2144–2153.
    1. Besseling J, Kastelein JJP, Defesche JC, Hutten BA, Hovingh GK. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA. 2015;313:1029–1036.
    1. Dominiczak MH, Caslake MJ. Apolipoproteins: metabolic role and clinical biochemistry applications. Ann Clin Biochem. 2011;48:498–515.
    1. Fizelova M, Miilunpohja M, Kangas AJ, Soininen P, Kuusisto J, Ala-Korpela M, et al. Associations of multiple lipoprotein and apolipoprotein measures with worsening of glycemia and incident type 2 diabetes in 6607 non-diabetic Finnish men. Atherosclerosis. 2015;240:272–277.
    1. Abbasi A, Corpeleijn E, Gansevoort RT, Gans ROB, Hillege HL, Stolk RP, et al. Role of HDL cholesterol and estimates of HDL particle composition in future development of type 2 diabetes in the general population: the PREVEND study. J Clin Endocrinol Metab. 2013;98:E1352–1359.
    1. Sasongko MB, Wong TY, Nguyen TT, Kawasaki R, Jenkins A, Shaw J, et al. Serum apolipoprotein AI and B are stronger biomarkers of diabetic retinopathy than traditional lipids. Diabetes Care. 2011;34:474–479.
    1. van den Broek I, Sobhani K, Van Eyk JE. Advances in quantifying apolipoproteins using LC-MS/MS technology: implications for the clinic. Expert Rev Proteomics. 2017;14:869–880.
    1. Blanchard V, Garçon D, Jaunet C, Chemello K, Billon-Crossouard S, Aguesse A, et al. A high-throughput mass spectrometry-based assay for large-scale profiling of circulating human apolipoproteins. J Lipid Res. 2020;61(7):1128–1139.
    1. Wargny M, Smati S, Pichelin M, Bigot-Corbel E, Authier C, Dierry V, et al. Fatty liver index is a strong predictor of changes in glycemic status in people with prediabetes: the IT-DIAB study. PLoS ONE. 2019;14:e0221524.
    1. Ramin-Mangata S, Wargny M, Pichelin M, Le May C, Thédrez A, Blanchard V, et al. Circulating PCSK9 levels are not associated with the conversion to type 2 diabetes. Atherosclerosis. 2020;293:49–56.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419.
    1. Blanchard V, Ramin-Mangata S, Billon-Crossouard S, Aguesse A, Durand M, Chemello K, et al. Kinetics of plasma apolipoprotein E isoforms by LC-MS/MS: a pilot study. J Lipid Res. 2018;59:892–900.
    1. R: The R Project for Statistical Computing [Internet]. Accessed 17 Dec 2020.
    1. Li L, Li P, Yang J, Huang X, Bao H, Zhang C, et al. Lipid levels and new-onset diabetes in a hypertensive population: the China Stroke Primary Prevention Trial. Sci Rep. 2017;7:7014.
    1. Sattar N, McConnachie A, Shaper AG, Blauw GJ, Buckley BM, de Craen AJ, et al. Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies. Lancet Lond Engl. 2008;371:1927–1935.
    1. Zanetti D, Gustafsson S, Assimes TL, Ingelsson E. Comprehensive investigation of circulating biomarkers and their causal role in atherosclerosis-related risk factors and clinical events. Circ Genomic Precis Med. 2020;13:e002996.
    1. Digenio A, Dunbar RL, Alexander VJ, Hompesch M, Morrow L, Lee RG, et al. Antisense-mediated lowering of plasma apolipoprotein C-III by volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes. Diabetes Care. 2016;39:1408–1415.
    1. Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology. 2019;51:165–176.
    1. Liu Y, Morton RE. Apolipoprotein F—a natural inhibitor of CETP and key regulator of lipoprotein metabolism. Curr Opin Lipidol. 2020;31:194–199.
    1. Schwartz GG, Leiter LA, Ballantyne CM, Barter PJ, Black DM, Kallend D, et al. Dalcetrapib reduces risk of new-onset diabetes in patients with coronary heart disease. Diabetes Care. 2020;43:1077–1084.
    1. Barter PJ, Cochran BJ, Rye K-A. CETP inhibition, statins and diabetes. Atherosclerosis. 2018;278:143–146.
    1. Seo JA, Kang M-C, Yang W-M, Hwang WM, Kim SS, Hong SH, et al. Apolipoprotein J is a hepatokine regulating muscle glucose metabolism and insulin sensitivity. Nat Commun. 2020;11:2024.
    1. Shim Y-J, Kang B-H, Jeon H-S, Park I-S, Lee K-U, Lee I-K, et al. Clusterin induces matrix metalloproteinase-9 expression via ERK1/2 and PI3K/Akt/NF-κB pathways in monocytes/macrophages. J Leukoc Biol. 2011;90:761–769.
    1. Kwon MJ, Ju T-J, Heo J-Y, Kim Y-W, Kim J-Y, Won K-C, et al. Deficiency of clusterin exacerbates high-fat diet-induced insulin resistance in male mice. Endocrinology. 2014;155:2089–2101.
    1. Flehmig G, Scholz M, Klöting N, Fasshauer M, Tönjes A, Stumvoll M, et al. Identification of adipokine clusters related to parameters of fat mass, insulin sensitivity and inflammation. PLoS ONE. 2014;9:e99785.
    1. Daimon M, Oizumi T, Karasawa S, Kaino W, Takase K, Tada K, et al. Association of the clusterin gene polymorphisms with type 2 diabetes mellitus. Metabolism. 2011;60:815–822.
    1. Nishimura K, Murakami T, Sakurai T, Miyoshi M, Kurahashi K, Kishi S, et al. Circulating apolipoprotein L1 is associated with insulin resistance-induced abnormal lipid metabolism. Sci Rep. 2019;9:14869.
    1. Duchateau PN, Movsesyan I, Yamashita S, Sakai N, Hirano K, Schoenhaus SA, et al. Plasma apolipoprotein L concentrations correlate with plasma triglycerides and cholesterol levels in normolipidemic, hyperlipidemic, and diabetic subjects. J Lipid Res. 2000;41:1231–1236.
    1. Bach-Ngohou K, Ouguerram K, Nazih H, Maugère P, Ripolles-Piquer B, Zaïr Y, et al. Apolipoprotein E kinetics: influence of insulin resistance and type 2 diabetes. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2002;26:1451–1458.
    1. Anthopoulos PG, Hamodrakas SJ, Bagos PG. Apolipoprotein E polymorphisms and type 2 diabetes: a meta-analysis of 30 studies including 5423 cases and 8197 controls. Mol Genet Metab. 2010;100:283–291.
    1. Chaudhary R, Likidlilid A, Peerapatdit T, Tresukosol D, Srisuma S, Ratanamaneechat S, et al. Apolipoprotein E gene polymorphism: effects on plasma lipids and risk of type 2 diabetes and coronary artery disease. Cardiovasc Diabetol. 2012;11:36.
    1. Chen DW, Shi JK, Li Y, Yang Y, Ren SP. Association between ApoE polymorphism and type 2 diabetes: a meta-analysis of 59 studies. Biomed Environ Sci BES. 2019;32:823–838.
    1. Huth C, von Toerne C, Schederecker F, de Las Heras Gala T, Herder C, Kronenberg F, et al. Protein markers and risk of type 2 diabetes and prediabetes: a targeted proteomics approach in the KORA F4/FF4 study. Eur J Epidemiol. 2019;34:409–422.
    1. Elhadad MA, Wilson R, Zaghlool SB, Huth C, Gieger C, Grallert H, et al. Metabolic syndrome and the plasma proteome: from association to causation. Cardiovasc Diabetol. 2021;20:111.

Source: PubMed

3
Sottoscrivi