Obstructive sleep apnea and risk of cardiovascular events and all-cause mortality: a decade-long historical cohort study

Tetyana Kendzerska, Andrea S Gershon, Gillian Hawker, Richard S Leung, George Tomlinson, Tetyana Kendzerska, Andrea S Gershon, Gillian Hawker, Richard S Leung, George Tomlinson

Abstract

Background: Obstructive sleep apnea (OSA) has been reported to be a risk factor for cardiovascular (CV) disease. Although the apnea-hypopnea index (AHI) is the most commonly used measure of OSA, other less well studied OSA-related variables may be more pathophysiologically relevant and offer better prediction. The objective of this study was to evaluate the relationship between OSA-related variables and risk of CV events.

Methods and findings: A historical cohort study was conducted using clinical database and health administrative data. Adults referred for suspected OSA who underwent diagnostic polysomnography at the sleep laboratory at St Michael's Hospital (Toronto, Canada) between 1994 and 2010 were followed through provincial health administrative data (Ontario, Canada) until May 2011 to examine the occurrence of a composite outcome (myocardial infarction, stroke, congestive heart failure, revascularization procedures, or death from any cause). Cox regression models were used to investigate the association between baseline OSA-related variables and composite outcome controlling for traditional risk factors. The results were expressed as hazard ratios (HRs) and 95% CIs; for continuous variables, HRs compare the 75th and 25th percentiles. Over a median follow-up of 68 months, 1,172 (11.5%) of 10,149 participants experienced our composite outcome. In a fully adjusted model, other than AHI OSA-related variables were significant independent predictors: time spent with oxygen saturation <90% (9 minutes versus 0; HR = 1.50, 95% CI 1.25-1.79), sleep time (4.9 versus 6.4 hours; HR = 1.20, 95% CI 1.12-1.27), awakenings (35 versus 18; HR = 1.06, 95% CI 1.02-1.10), periodic leg movements (13 versus 0/hour; HR = 1.05, 95% CI 1.03-1.07), heart rate (70 versus 56 beats per minute [bpm]; HR = 1.28, 95% CI 1.19-1.37), and daytime sleepiness (HR = 1.13, 95% CI 1.01-1.28).The main study limitation was lack of information about continuous positive airway pressure (CPAP) adherence.

Conclusion: OSA-related factors other than AHI were shown as important predictors of composite CV outcome and should be considered in future studies and clinical practice.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1. Flow diagram of the final…
Figure 1. Flow diagram of the final cohort.
*Split night, diagnostic study night when treatment was initiated due to severe OSA.
Figure 2. Unadjusted Kaplan-Meier survival curves by…
Figure 2. Unadjusted Kaplan-Meier survival curves by obstructive sleep apnea severity as expressed by the apnea-hypopnea index.
The numbers at risk are presented above the x-axis: from the top to the bottom, AHI30.
Figure 3. Predicted survival by OSA severity,…
Figure 3. Predicted survival by OSA severity, adjusted for traditional CV risk factors
(BMI = 29, age = 50, sex = men, never smoked, without prior hypertension, diabetes, MI, stroke, or heart failure).
Figure 4. Results from multivariable Cox regression…
Figure 4. Results from multivariable Cox regression model presented as hazard ratios with shading representing confidence levels (99%, 95%, 90%, 80%, and 70%).
AWK, number of awakenings in TST; TST90SaO2, sleep time spent with SaO2 less than 90%; PLMI, periodic leg movement index; HR, mean heart rate during sleep; day sleep, DS, identified by a positive answer to the question “During the day, do you ever fall asleep unintentionally?”.
Figure 5. Predicted survival curves to show…
Figure 5. Predicted survival curves to show the effect of oxygen saturation
(comparing 75th percentile [9 min] to 25th percentile [0 min]) controlling for potential confounders (BMI = 29, age = 50, sex = men, never smoked, without prior hypertension, diabetes, MI, stroke or heart failure, TST = 5.8, AWK = 25, PLMI, 1.2, mean heart rate, 63, without reporting excessive DS).
Figure 6. Clinical nomogram for obstructive sleep…
Figure 6. Clinical nomogram for obstructive sleep apnea patients.
To obtain the nomogram predicted probability of three- and five-year event-free survival and to estimate median event-free survival, locate patient values at each axis, then draw a vertical line to the “Point” scale (axis) to determine how many points are attributed for each predictor. Sum the points for all predictors. Locate the sum on the “Total Points” scale. Draw a vertical line towards the “3-year Survival,” “5-year Survival,” and “Median Survival Time” axes to determine the three-year composite CV outcome-free survival, the five-year event-free survival, and to estimate median survival respectively. PLMI, periodic limb movement index; TST90SaO2, sleep time spent with SaO2 less than 90%.

References

    1. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, et al. (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol In press.
    1. Epstein LJ, Kristo D, Strollo PJ Jr, Friedman N, Malhotra A, et al. (2009) Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 5: 263–276.
    1. Leung RS, Comondore VR, Ryan CM, Stevens D (2012) Mechanisms of sleep-disordered breathing: causes and consequences. Pflugers Arch 463: 213–230.
    1. Bradley TD, Floras JS (2009) Obstructive sleep apnoea and its cardiovascular consequences. Lancet 373: 82–93.
    1. Kohler M, Stradling JR (2010) Mechanisms of vascular damage in obstructive sleep apnea. Nat Rev Cardiol 7: 677–685.
    1. Chami HA, Fontes JD, Vasan RS, Keaney JF Jr, O'Connor GT, et al. (2013) Vascular inflammation and sleep disordered breathing in a community-based cohort. Sleep 36: 763–768C.
    1. Kendzerska T, Mollayeva T, Gershon AS, Leung RS, Hawker G, et al. (2014) Untreated obstructive sleep apnea and the risk for serious long-term adverse outcomes: a systematic review. Sleep Med Rev 18: 49–59.
    1. Polysomnography in patients with obstructive sleep apnea: an evidence-based analysis. Ont Health Technol Assess Ser 6: 1–38.
    1. Edwards BA, Wellman A, Owens RL (2013) PSGs: more than just the AHI. J Clin Sleep Med 9: 527–528.
    1. Eckert DJ, Jordan AS, Malhotra A, White DP, Wellman A (2013) Defining phenotypic causes of obstructive sleep apnea: Identification of novel therapeutic targets. Am J Respir Crit Care Med 188: 996–1004.
    1. Punjabi NM, Caffo BS, Goodwin JL, Gottlieb DJ, Newman AB, et al. (2009) Sleep-disordered breathing and mortality: a prospective cohort study. PLoS Med 6: e1000132.
    1. Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, et al. (2008) Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep 31: 1071–1078.
    1. Gottlieb DJ, Yenokyan G, Newman AB, O'Connor GT, Punjabi NM, et al. (2010) Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study. Circulation 122: 352–360.
    1. Redline S, Yenokyan G, Gottlieb DJ, Shahar E, O'Connor GT, et al. (2010) Obstructive sleep apnea-hypopnea and incident stroke: the sleep heart health study. Am J Respir Crit Care Med 182: 269–277.
    1. (2005) Improving health care data in Ontario. ICES investigative report Toronto: Institute for Clinical Evaluative Sciences.
    1. Policies and procedures manual for the assistive devices program. Ministry of Health and Long-Term Care 1–121.
    1. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 22: 667–689.
    1. Fleetham J, Ayas N, Bradley D, Ferguson K, Fitzpatrick M, et al. (2006) Canadian Thoracic Society guidelines: diagnosis and treatment of sleep disordered breathing in adults. Can Respir J 13: 387–392.
    1. Harrell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York: Springer. xxii, 568 .
    1. Grambsch P, Therneau T (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81: 515–526.
    1. Azur MJ, Stuart EA, Frangakis C, Leaf PJ (2011) Multiple imputation by chained equations: what is it and how does it work? Int J Methods Psychiatr Res 20: 40–49.
    1. Van Buuren S, Groothuis-Oudshoorn K (2011) MICE: multivariate imputation by chained equations in R. Journal of Statistical Software 45: 1–67.
    1. Rubin DB (1987) Multiple imputation for nonresponse in surveys. New York: Wiley. xxix, 258 p.
    1. Atkinson AC (1980) A note on the generalized information criterion for choice of a model. Biometrika 67: 413–418.
    1. Chia YC (2011) Review of tools of cardiovascular disease risk stratification: interpretation, customisation and application in clinical practice. Singapore Med J 52: 116–123.
    1. Harrell FE (2013) RMS: regression modeling strategies, R package verson 4.0-0. [mgn]package = rms.
    1. Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365: 1046–1053.
    1. Buchner NJ, Sanner BM, Borgel J, Rump LC (2007) Continuous positive airway pressure treatment of mild to moderate obstructive sleep apnea reduces cardiovascular risk. Am J Respir Crit Care Med 176: 1274–1280.
    1. Punjabi NM, Newman AB, Young TB, Resnick HE, Sanders MH (2008) Sleep-disordered breathing and cardiovascular disease: an outcome-based definition of hypopneas. Am J Respir Crit Care Med 177: 1150–1155.
    1. Jun J, Reinke C, Bedja D, Berkowitz D, Bevans-Fonti S, et al. (2010) Effect of intermittent hypoxia on atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 209: 381–386.
    1. Foster GE, Hanly PJ, Ahmed SB, Beaudin AE, Pialoux V, et al. (2010) Intermittent hypoxia increases arterial blood pressure in humans through a Renin-Angiotensin system-dependent mechanism. Hypertension 56: 369–377.
    1. Atkeson A, Jelic S (2008) Mechanisms of endothelial dysfunction in obstructive sleep apnea. Vasc Health Risk Manag 4: 1327–1335.
    1. Koo BB, Blackwell T, Ancoli-Israel S, Stone KL, Stefanick ML, et al. (2011) Association of incident cardiovascular disease with periodic limb movements during sleep in older men: outcomes of sleep disorders in older men (MrOS) study. Circulation 124: 1223–1231.
    1. Walters AS, Rye DB (2010) Evidence continues to mount on the relationship of restless legs syndrome/periodic limb movements in sleep to hypertension, cardiovascular disease, and stroke. Sleep 33: 287.
    1. Vgontzas AN, Liao D, Pejovic S, Calhoun S, Karataraki M, et al. (2010) Insomnia with short sleep duration and mortality: the Penn State cohort. Sleep 33: 1159–1164.
    1. Krakow B, Romero E, Ulibarri VA, Kikta S (2012) Prospective assessment of nocturnal awakenings in a case series of treatment-seeking chronic insomnia patients: a pilot study of subjective and objective causes. Sleep 35: 1685–1692.
    1. Kendzerska T, Shapiro C. (2013) Associations and consequences of hypersomnias: morbidity and mortality. Kushida CA, editor. The encyclopedia of sleep. Waltham (Massachusetts): Academic Press 2: : 460–468.
    1. Gottlieb DJ, Craig SE, Lorenzi-Filho G, Heeley E, Redline S, et al. (2013) Sleep apnea cardiovascular clinical trials – current status and steps forward: The International Collaboration of Sleep Apnea Cardiovascular Trialists. Sleep 36: 975–980.
    1. Barbe F, Duran-Cantolla J, Sanchez-de-la-Torre M, Martinez-Alonso M, Carmona C, et al. (2012) Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. JAMA 307: 2161–2168.
    1. Young T, Finn L, Austin D, Peterson A (2003) Menopausal status and sleep-disordered breathing in the Wisconsin Sleep Cohort Study. Am J Respir Crit Care Med 167: 1181–1185.
    1. Pialoux V, Brown AD, Leigh R, Friedenreich CM, Poulin MJ (2009) Effect of cardiorespiratory fitness on vascular regulation and oxidative stress in postmenopausal women. Hypertension 54: 1014–1020.
    1. Eastham JA, Kattan MW, Scardino PT (2002) Nomograms as predictive models. Semin Urol Oncol 20: 108–115.
    1. Iasonos A, Schrag D, Raj GV, Panageas KS (2008) How to build and interpret a nomogram for cancer prognosis. J Clin Oncol 26: 1364–1370.
    1. Lin DY, Psaty BM, Kronmal RA (1998) Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics 54: 948–963.
    1. Hand DJ (2006) Classifier technology and the illusion of progress. Stat Sci 21: 1–14.
    1. Tzoulaki I, Liberopoulos G, Ioannidis JP (2009) Assessment of claims of improved prediction beyond the Framingham risk score. JAMA 302: 2345–2352.
    1. Pencina MJ, D'Agostino RB, Vasan RS (2010) Statistical methods for assessment of added usefulness of new biomarkers. Clin Chem Lab Med 48: 1703–1711.

Source: PubMed

3
Sottoscrivi