Controlled human exposures to wood smoke: a synthesis of the evidence

Carley Schwartz, Anette Kocbach Bølling, Christopher Carlsten, Carley Schwartz, Anette Kocbach Bølling, Christopher Carlsten

Abstract

Background: Exposure to particulate matter (PM) from wood combustion represents a global health risk, encompassing diverse exposure sources; indoor exposures due to cooking in developing countries, ambient PM exposures from residential wood combustion in developed countries, and the predicted increasing number of wildfires due to global warming. Although physicochemical properties of the PM, as well as the exposure levels vary considerably between these sources, controlled human exposure studies may provide valuable insight to the harmful effects of wood smoke (WS) exposures in general. However, no previous review has focused specifically on controlled human exposure studies to WS.

Results: The 22 publications identified, resulting from 12 controlled human studies, applied a range of combustion conditions, exposure levels and durations, and exercise components in their WS exposure. A range of airway, cardiovascular and systemic endpoints were assessed, including lung function and heart rate measures, inflammation and oxidative stress. However, the possibility for drawing general conclusions was precluded by the large variation in study design, resulting in differences in physicochemical properties of WS, effective dose, as well as included endpoints and time-points for analysis. Overall, there was most consistency in reported effects for airways, while oxidative stress, systemic inflammation and cardiovascular physiology did not show any clear patterns.

Conclusion: Based on the reviewed controlled human exposure studies, conclusions regarding effects of acute WS exposure on human health are premature. Thus, more carefully conducted human studies are needed. Future studies should pay particular attention to the applied WS exposure, to assure that both exposure levels and PM properties reflect the research question.

Keywords: Airway; Controlled human exposure; Inflammation; Review; Systemic; Wood smoke.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
WS characteristics and sources
Fig. 2
Fig. 2
Review process algorithm

References

    1. WHO . Household air pollution and health. Geneva: World Health Organization; 2018.
    1. Barry C. Increase in wood as main source of household heating most notable in the northeast. Washington (DC): U.S. Energy Information Administration; 2014.
    1. Sigsgaard T, Forsberg B, Annesi-Maesano I, Blomberg A, Bølling A, Boman C, Bønlokke J, Brauer M, Bruce N, Heroux ME, et al. Health impacts of anthropogenic biomass burning in the developed world. Eur Respir J. 2015;46(6):1577–1588. doi: 10.1183/13993003.01865-2014.
    1. National Annual Emissions Trend . Environmental Protection Agency. 2020.
    1. Sun Q, Miao C, Hanel M, Borthwick AGL, Duan Q, Ji D, Li H. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ Int. 2019;128:125–136. doi: 10.1016/j.envint.2019.04.025.
    1. Cascio W. Wildland fire smoke and human health. Sci Total Environ. 2018;624:586–595. doi: 10.1016/j.scitotenv.2017.12.086.
    1. Bølling AK, Pagels J, Barregard L, Sallsten G, Schware PE, Boman C. Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particles properties. Part Fibre Toxicol. 2009;6(29):1–20.
    1. Liu JC, Wilson A, Mickley LJ, Dominici F, Ebisu K, Yun W, Sulprizio MP, Peng RD, Yue X, Son JY, et al. Wildfire-specific fine particulate matter and risk of hospital admissions in urban and rural counties. Epidemiology. 2017;28(1):77–85. doi: 10.1097/EDE.0000000000000556.
    1. Löndahl J, Pagels J, Boman C, Swietlicki E, Massling A, Rissler J, Blomberg A, Bohgard M, Sandström T. Deposition of biomass combustion aerosol particles in the human respiratory tract. Inhal Toxicol. 2008;20(10):923–933. doi: 10.1080/08958370802087124.
    1. Löndahl J, Massling A, Swietlicki E, Bräuner EV, Ketzel M, Pagels J, Loft S. Experimentally determined human respiratory tract deposition of airborne particles at a busy street. Environ Sci Technol. 2009;43(13):4659–4664. doi: 10.1021/es803029b.
    1. Kristensson A, Rissler J, Londahl J, et al. Size-resolved respiratory tract deposition of sub-micrometer aerosol particles in a residential area with wintertime wood combustion. Aerosol Air Qual Res. 2013;13:24–35. doi: 10.4209/aaqr.2012.07.0194.
    1. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR. Woodsmoke health effects: a review. Inhal Toxicol. 2007;19(1):67–106. doi: 10.1080/08958370600985875.
    1. Rokoff LB, Koutrakis P, Garshick E, Karagas MR, Oken E, Gold DR, Fleisch AF. Wood stove pollution in the developed world: a case to raise awareness among pediatricians. Curr Prob Pediarr Ad. 2017;47(6):123–141.
    1. Groot E, Caturay A, Khan Y, Copes R. A systematic review of the health impacts of occupational exposure to wildland fires. Int J Occup Environ Health. 2019;32(2):121–140.
    1. Scott A, Reilly C. Wood and biomass smoke: addressing human health risks and exposures. Chem Res Toxicol. 2019;32(2):219–221. doi: 10.1021/acs.chemrestox.8b00318.
    1. Ghio AJ, Soukup JM, Case M, Dailey LA, Richards J, Berntsen J, Devlin RB, Stone S, Rappold A. Exposure to WS particles produces inflammation in healthy volunteers. Occup Environ Med. 2012;69(3):170–175. doi: 10.1136/oem.2011.065276.
    1. Burbank AJ, Vadlamudi A, Mills KH, Alt EM, Wells H, Zhou H, Alexis N, Hernandez ML, Peden DB. The glutathione-S-transferase mu-1 null genotype increases WS-induced airway inflammation. J Allergy Clin Immunlo. 2019;143(6):2299–2302. doi: 10.1016/j.jaci.2019.02.006.
    1. Rebuli ME, Speen AM, Martin EM, Addo KA, Pawlak EA, Glista-Baker E, Robinette C, Zhou H, Noah TL, Jaspers I. WS exposure alters human inflammatory responses to viral infection in a sex-specific manner: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2019;199(8):996–1007. doi: 10.1164/rccm.201807-1287OC.
    1. Fedak KM, Good N, Walker ES, Balmes J, Brook RD, Clark ML, Cole-Hunter T, Devlin R, L’Orange C, Luckasen G, et al. Acute effects on blood pressure following controlled exposure to cookstove air pollution in the STOVES study. J Am Heart Assoc. 2019;8:012246. doi: 10.1161/JAHA.119.012246.
    1. Sehlstedt M, Dove R, Boman C, Pagels J, Swietlicki E, Londahl J, Westerholm R, Bosson J, Barath S, Behndig AF, et al. Antioxidant airway responses following experimental exposure to WS in man. Part Fibre Toxicol. 2010;7:1–11. doi: 10.1186/1743-8977-7-21.
    1. Pope AC, Hansen JC, Kuprov R, Sanders MD, Anderson MN, Eatough DJ. Vascular function and short-term exposure to fine particulate air pollution. J Air Waste Manage Assoc. 2011;61:858–863. doi: 10.3155/1047-3289.61.8.858.
    1. Ferguson MD, Semmens EO, Dumke C, Quindry JC, Ward TJ. Measured pulmonary and systemic markers of inflammation and oxidative stress following wildland firefighter simulations. J Occup Environ Med. 2016;58(4):407–413. doi: 10.1097/JOM.0000000000000688.
    1. Ferguson MD, Semmens EO, Weiler E, Domitrovich J, French M, Migliaccio C, Palmer C, Dumke C, Ward T. Lung function measures following simulated wildland firefighter exposures. J Occup Environ Hyg. 2017;14(9):739–748. doi: 10.1080/15459624.2017.1326700.
    1. Peters B, Ballmann C, Quindry T, Zehner EG, McCroskey J, Ferguson M, Ward T, Dumke C, Quindry JC. Experimental woodsmoke exposure during exercise and blood oxidative stress. J Occup Environ Med. 2018;60(12):1073–1081. doi: 10.1097/JOM.0000000000001437.
    1. Barregard L, Sallsten G, Gustafson P, Andersson L, Johansson L. Experimental exposure to wood-smoke particles in healthy humans: effects on markers of inflammation, coagulation, and lipid peroxidation. Inhal Toxicol. 2006;18(11):845–853. doi: 10.1080/08958370600685798.
    1. Barregard L, Sallsten G, Andersson L, Almstrand AC, Gustafson P, Andersson M, Olin AC. Experimental exposure to wood smoke: effects on airway inflammation and oxidative stress. Occup Environ Med. 2008;65(5):319–324. doi: 10.1136/oem.2006.032458.
    1. Danielsen PH, Brauner EV, Barregard L, Sallsten G, Wallin M, Olinski R, Rozalski R, Moller P, Loft S. Oxidatively damaged DNA and its repair after experimental exposure to WS in healthy humans. Mutat Res. 2008;642(1–2):37–42. doi: 10.1016/j.mrfmmm.2008.04.001.
    1. Murgia N, Barregard L, Sallsten G, Almstrand AC, Montuschi P, Ciabattoni G, Olin AC. 8-isoprostande in exhaled breath condensate after experimental exposure to wood smoke in humans. J Biol Reg Homeos Ag. 2016;30(1):263–270.
    1. Stockfelt L, Sallsten G, Olin AC, Almerud P, Samuelsson L, Johannesson S, Molnar P, Strandberg B, Almstrand AC, Bergemalm-Rynell K, Barregard L. Effects on airways of short-term exposure to two kinds of WS in a chamber study of healthy humans. Inhal Toxicol. 2012;24(1):47–54. doi: 10.3109/08958378.2011.633281.
    1. Stockfelt L, Sallsten G, Almerud P, Basu S, Barregard L. Short-term chamber exposure to low doses of two kinds of WS does not induce systemic inflammation, coagulation or oxidative stress in healthy humans. Inhal Toxicol. 2013;25(8):417–425. doi: 10.3109/08958378.2013.798387.
    1. Riddervold IS, Bonlokke JH, Olin AC, Gronborg TK, Schlunssen V, Skogstrand K, Hougaard D, Massling A, Sigsgaard T. Effects of WS particles from wood-burning stoves on the respiratory health of atopic humans. Part Fibre Toxicol. 2012;9:12. doi: 10.1186/1743-8977-9-12.
    1. Forchhammer L, Moller P, Riddervold IS, Bonlokke J, Massling A, Sigsgaard T, Loft S. Controlled human wood smoke exposure: oxidative stress, inflammation and microvascular function. Part Fibre Toxicol. 2012;9:1–11. doi: 10.1186/1743-8977-9-7.
    1. Bønløkke JH, Riddervold IS, Gronborg TK, Skogstrand K, Hougaard DM, Barregard L, Sigsgaard T. Systemic effects of WS in a short-term experimental exposure study of atopic volunteers. J Occup Environ Med. 2014;56(2):177–183. doi: 10.1097/JOM.0000000000000067.
    1. Unosson J, Blomberg A, Sandstrom T, Muala A, Boman C, Nystrom R, Westerholm R, Mills NL, Newby DE, Langrish JP, Bosson JA. Exposure to WS increases arterial stiffness and decreases heart rate variability in humans. Part Fibre Toxicol. 2013;10(1):1–8. doi: 10.1186/1743-8977-10-20.
    1. Muala A, Rankin G, Sehlstedt M, Unosson J, Bosson JA, Behndig A, Pourazar J, Nystrom R, Pettersson EE, Bergvall C, et al. Acute exposure to WS from incomplete combustion - indications of cytotoxicity. Part Fibre Toxicol. 2015;12(1):1–14. doi: 10.1186/s12989-015-0111-7.
    1. Hunter AL, Unosson J, Bosson JA, Langrish JP, Pourazar J, Raftis JB, Miller MR, Lucking AJ, Boman C, Nyström R, et al. Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters. Part Fibre Toxicol. 2014;11(1):1–13. doi: 10.1186/s12989-014-0062-4.
    1. Oravisjarvi K, Pietikainen M, Ruuskanen J, Rautio A, Voutilainen A, Keiski RL. Effects of physical activity on the deposition of traffic-related particles into the human lungs in silico. Sci Total Environ. 2011;409(21):4511–4518. doi: 10.1016/j.scitotenv.2011.07.020.
    1. Riddervold IS, Bønløkke JH, Molhave L, Massling A, Jensen B, Grønborg TK, Bossi R, Forchhammer L, Kjaergaard SK, Sigsgaard T, et al. WS in a controlled exposure experiment with human volunteers. Inhal Toxicol. 2011;23(5):277–288. doi: 10.3109/08958378.2011.567401.
    1. Glantzounis GK, Tsimoyiannis EC, Kappas AM, Galaris DA. Uric acid and oxidative stress. Curr Pharm Des. 2005;11(32):4145–4151. doi: 10.2174/138161205774913255.
    1. Ghiselli A, Serafini M, Natella F, Scaccini C. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med. 2000;29(11):1106–1114. doi: 10.1016/S0891-5849(00)00394-4.
    1. Blais CM, Davis BE, Graham BL, Cockcroft DW. Respiratory duty cycles in individuals with and without airway hyperresponsiveness. Chest. 2020;157(2):356–362. doi: 10.1016/j.chest.2019.09.005.
    1. Wooding DJ, Ryu MH, Hüls A, Lee AD, Lin DTS, Rider CF, Yuen AC, Carlsten C. Particle depletion does not remediate acute effects of traffic-related air pollution and allergen. A randomized, double-bling crossover study. Am J Respir Crit Care. 2019;200(5):565–574. doi: 10.1164/rccm.201809-1657OC.
    1. Piyadasa H, Hemshekhar M, Carlsten C, Mookherjee N. Inhaled diesel exhaust decreases the antimicrobial peptides α-defensin and S100A7 in human bronchial secretions. Am J Respir Crit Care. 2018;197(10):1358–1361. doi: 10.1164/rccm.201708-1714LE.

Source: PubMed

3
Sottoscrivi