Maternal valacyclovir and infant cytomegalovirus acquisition: a randomized controlled trial among HIV-infected women

Alison C Roxby, Claire Atkinson, Kristjana Asbjörnsdóttir, Carey Farquhar, James N Kiarie, Alison L Drake, Anna Wald, Michael Boeckh, Barbra Richardson, Vincent Emery, Grace John-Stewart, Jennifer A Slyker, Alison C Roxby, Claire Atkinson, Kristjana Asbjörnsdóttir, Carey Farquhar, James N Kiarie, Alison L Drake, Anna Wald, Michael Boeckh, Barbra Richardson, Vincent Emery, Grace John-Stewart, Jennifer A Slyker

Abstract

Background: Studies in HIV-1-infected infants and HIV-1-exposed, uninfected infants link early cytomegalovirus (CMV) acquisition with growth delay and cognitive impairment. We investigated maternal valacyclovir to delay infant acquisition of CMV.

Methods: Pregnant women with HIV-1, HSV-2 and CD4 count >250 cells/µl were randomized at 34 weeks gestation to 500 mg twice-daily valacyclovir or placebo for 12 months. Maternal CMV DNA was measured in plasma at 34 weeks gestation, in cervical secretions at 34 and 38 weeks gestation, and in breast milk at 7 postpartum timepoints; infant CMV DNA was measured in dried blood spots at 8 timepoints including birth.

Results: Among 148 women, 141 infants were compared in intent-to-treat analyses. Maternal and infant characteristics were similar between study arms. Infant CMV acquisition did not differ between study arms, with 46/70 infants (66%) in placebo arm and 47/71 infants (66%) in the valacyclovir arm acquiring CMV; median time to CMV detection did not differ. CMV DNA was detected in 92% of 542 breast milk specimens with no difference in CMV level between study arms. Change in cervical shedding of CMV DNA between baseline and 38 weeks was 0.40-log greater in the placebo arm than the valacyclovir arm (p = 0.05).

Conclusions: In this cohort of HIV-1-seropositive mothers, two-thirds of infants acquired CMV by one year. Maternal valacyclovir had no effect on timing of infant CMV acquisition or breast milk CMV viral loads, although it modestly reduced cervical CMV shedding. Maternal prophylaxis to reduce infant CMV acquisition warrants further evaluation in trials with antiviral agents.

Trials registration: ClinicalTrials.gov NCT00530777.

Conflict of interest statement

Competing Interests: Please note that GlaxoSmithKline donated valacyclovir and matched placebo to the study. This does not alter our adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Study flow chart.
Figure 1. Study flow chart.
Figure 2. Valacyclovir and infant CMV acquisition.
Figure 2. Valacyclovir and infant CMV acquisition.
A) Kaplan-Meier survival curves show cumulative probability of CMV DNA detection in infant dried blood spots (DBS) in all infants by randomization arm. P value for log-rank test. B) Loess curves fitted to mean CMV DNA level. HIV-infected infant CMV DNA levels are indicated by Xs, HIV-exposed uninfected infant CMV DNA levels are indicated by closed circles; black indicates placebo and red valacyclovir arm. Dotted line indicates assay limit of detection (100 copies/million cells).
Figure 3. Valacyclovir and maternal CMV levels.
Figure 3. Valacyclovir and maternal CMV levels.
A) Loess curves fitted to mean CMV DNA levels in breast milk samples collected at 2, 6 and 14 weeks postpartum, and 6, 9 and 12 months postpartum. Red line and markers indicate women randomized to valacyclovir. Dotted line indicates assay limit of detection (100 copies/ml). Note: few women were breastfeeding after 180 days postpartum. B) Bars show proportion of women with detectable CMV DNA in the cervix at pre-randomization (34 weeks gestation) and 4 weeks post-randomization (38 weeks gestation). P values below the graph compare the proportion of detectable responses between arms, p values above graph compare the proportion of detectables within each arm, over the two time-points. C) Plots show individual CMV DNA levels for women at baseline and post-randomization, red middle bars show group medians, red whiskers show upper and lower quartiles. P values below the graph show comparison of CMV DNA levels between arms, p values above graph compare CMV DNA levels within each arm, over the two time-points.

References

    1. Gompels UA, Larke N, Sanz-Ramos M, Bates M, Musonda K, et al. (2012) Human cytomegalovirus infant infection adversely affects growth and development in maternally HIV-exposed and unexposed infants in Zambia. Clin Infect Dis 54: 434–442.
    1. Slyker JA, Lohman-Payne BL, John-Stewart GC, Maleche-Obimbo E, Emery S, et al. (2009) Acute cytomegalovirus infection in Kenyan HIV-infected infants. AIDS 23: 2173–2181.
    1. Kapetanovic S, Aaron L, Montepiedra G, Burchett SK, Kovacs A (2012) T-cell activation and neurodevelopmental outcomes in perinatally HIV-infected children. AIDS 26: 959–969.
    1. Kovacs A, Schluchter M, Easley K, Demmler G, Shearer W, et al. (1999) Cytomegalovirus infection and HIV-1 disease progression in infants born to HIV-1-infected women. Pediatric Pulmonary and Cardiovascular Complications of Vertically Transmitted HIV Infection Study Group. N Engl J Med 341: 77–84.
    1. Kaye S, Miles D, Antoine P, Burny W, Ojuola B, et al. (2008) Virological and immunological correlates of mother-to-child transmission of cytomegalovirus in The Gambia. J Infect Dis 197: 1307–1314.
    1. Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK (2013) The “silent” global burden of congenital cytomegalovirus. Clin Microbiol Rev 26: 86–102.
    1. Winston DJ, Wirin D, Shaked A, Busuttil RW (1995) Randomised comparison of ganciclovir and high-dose acyclovir for long-term cytomegalovirus prophylaxis in liver-transplant recipients. Lancet 346: 69–74.
    1. Feinberg JE, Hurwitz S, Cooper D, Sattler FR, MacGregor RR, et al. (1998) A randomized, double-blind trial of valaciclovir prophylaxis for cytomegalovirus disease in patients with advanced human immunodeficiency virus infection. AIDS Clinical Trials Group Protocol 204/Glaxo Wellcome 123-014 International CMV Prophylaxis Study Group. J Infect Dis 177: 48–56.
    1. Emery VC, Sabin C, Feinberg JE, Grywacz M, Knight S, et al. (1999) Quantitative effects of valacyclovir on the replication of cytomegalovirus (CMV) in persons with advanced human immunodeficiency virus disease: baseline CMV load dictates time to disease and survival. The AIDS Clinical Trials Group 204/Glaxo Wellcome 123-014 International CMV Prophylaxis Study Group. J Infect Dis 180: 695–701.
    1. Drake AL, Roxby AC, Ongecha-Owuor F, Kiarie J, John-Stewart G, et al. (2012) Valacyclovir suppressive therapy reduces plasma and breast milk HIV-1 RNA levels during pregnancy and postpartum: a randomized trial. J Infect Dis 205: 366–375.
    1. Atkinson C, Walter S, Sharland M, Tookey P, Luck S, et al. (2009) Use of stored dried blood spots for retrospective diagnosis of congenital CMV. J Med Virol 81: 1394–1398.
    1. Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, et al. (1998) Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62: 768–775.
    1. Frederick T, Homans J, Spencer L, Kramer F, Stek A, et al... (2012) The Effect of Prenatal Highly Active Antiretroviral Therapy on the Transmission of Congenital and Perinatal/Early Postnatal Cytomegalovirus Among HIV-Infected and HIV-Exposed Infants. Clin Infect Dis.
    1. Guibert G, Warszawski J, Le Chenadec J, Blanche S, Benmebarek Y, et al. (2009) Decreased risk of congenital cytomegalovirus infection in children born to HIV-1-infected mothers in the era of highly active antiretroviral therapy. Clin Infect Dis 48: 1516–1525.
    1. Glennie SJ, Nyirenda M, Williams NA, Heyderman RS (2012) Do multiple concurrent infections in African children cause irreversible immunological damage? Immunology 135: 125–132.
    1. Gantt S, Carlsson J, Shetty AK, Seidel KD, Qin X, et al. (2008) Cytomegalovirus and Epstein-Barr virus in breast milk are associated with HIV-1 shedding but not with mastitis. AIDS 22: 1453–1460.
    1. Griffiths PD (2006) CMV as a cofactor enhancing progression of AIDS. J Clin Virol 35: 489–492.
    1. Kalil AC, Levitsky J, Lyden E, Stoner J, Freifeld AG (2005) Meta-analysis: the efficacy of strategies to prevent organ disease by cytomegalovirus in solid organ transplant recipients. Ann Intern Med 143: 870–880.
    1. Jacquemard F, Yamamoto M, Costa JM, Romand S, Jaqz-Aigrain E, et al. (2007) Maternal administration of valaciclovir in symptomatic intrauterine cytomegalovirus infection. BJOG 114: 1113–1121.
    1. Zuckerman RA, Lucchetti A, Whittington WL, Sanchez J, Coombs RW, et al. (2009) HSV suppression reduces seminal HIV-1 levels in HIV-1/HSV-2 co-infected men who have sex with men. AIDS 23: 479–483.
    1. Shen CY, Chang SF, Yen MS, Ng HT, Huang ES, et al. (1993) Cytomegalovirus excretion in pregnant and nonpregnant women. J Clin Microbiol 31: 1635–1636.
    1. Mostad SB, Kreiss JK, Ryncarz A, Chohan B, Mandaliya K, et al. (2000) Cervical shedding of herpes simplex virus and cytomegalovirus throughout the menstrual cycle in women infected with human immunodeficiency virus type 1. Am J Obstet Gynecol 183: 948–955.
    1. Drake AL, Roxby AC, Kiarie J, Richardson BA, Wald A, et al. (2012) Infant Safety during and after Maternal Valacyclovir Therapy in Conjunction with Antiretroviral HIV-1 Prophylaxis in a Randomized Clinical Trial. PLoS One 7: e34635.

Source: PubMed

3
Sottoscrivi