Right ventricular function and its coupling to pulmonary circulation predicts exercise tolerance in systolic heart failure

Valéry Legris, Bernard Thibault, Jocelyn Dupuis, Michel White, Anita W Asgar, Annik Fortier, Céline Pitre, Nadia Bouabdallaoui, Christine Henri, Eileen O'Meara, Anique Ducharme, EARTH Investigators, Valéry Legris, Bernard Thibault, Jocelyn Dupuis, Michel White, Anita W Asgar, Annik Fortier, Céline Pitre, Nadia Bouabdallaoui, Christine Henri, Eileen O'Meara, Anique Ducharme, EARTH Investigators

Abstract

Aims: Right ventricular (RV) dysfunction, pulmonary hypertension, and exercise intolerance have prognostic values, but their interrelation is not fully understood. We investigated how RV function alone and its coupling with pulmonary circulation (RV-PA) predict cardio-respiratory fitness in patients with heart failure and reduced ejection fraction (HFrEF).

Methods and results: The Evaluation of Resynchronization Therapy for Heart Failure (EARTH) study included 205 HFrEF patients with narrow (n = 85) and prolonged (n = 120) QRS duration undergoing implantable cardioverter defibrillator implantation. All patients underwent a comprehensive evaluation with exercise tolerance tests and echocardiography. We investigated the correlations at baseline between RV parameters {size, function [tricuspid annular plane systolic excursion (TAPSE), RV fractional area change (RV-FAC), and RV myocardial performance index (RV-MPI)], pulmonary artery systolic pressure (PASP), and tricuspid regurgitation}; left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume index (LVEDVi), and left atrial volume index (LAVi); and cardiopulmonary exercise test (CPET) [peak VO2 , minute ventilation/carbon dioxide production (VE/VCO2 ), 6 min walk distance (6MWD), and submaximal exercise duration (SED)]. We also studied the relationship between RV-PA coupling (TAPSE/PASP ratio) and echocardiographic parameters in patients with both data available. Univariate and multivariate linear regression models were used. Patients enrolled in EARTH (overall population) were mostly male (73.2%), mean age 61.0 ± 9.8 years, New York Heart Association class II-III (87.8%), mean LVEF of 26.6 ± 7.7%, and reduced peak VO2 (15.1 ± 4.6 mL/kg/min). Of these, 100 had both TAPSE and PASP available (TAPSE/PASP population): they exhibited higher BNP, wider QRS duration, larger LVEDVi, with more having tricuspid regurgitation compared with the 105 patients for whom these values were not available (all P < 0.05). RV-FAC (β = 7.5), LAVi (β = -0.1), and sex (female, β = -1.9) predicted peak VO2 in the overall population (all P = 0.01). When available, TAPSE/PASP ratio was the only echocardiographic parameter associated with peak VO2 (β = 6.8; P < 0.01), a threshold ≤0.45 predicting a peak VO2 ≤ 14 mL/kg/min (0.39 for VO2 ≤ 12). RV-MPI was the only echocardiographic parameter associated with ventilatory inefficiency (VE/VCO2 ) and 6MWD (β = 21.9 and β = -69.3, respectively, both P ≤ 0.01) in the overall population. In presence of TAPSE/PASP, it became an important predictor for those two CPET (β = -18.0 and β = 72.4, respectively, both P < 0.01), together with RV-MPI (β = 18.5, P < 0.01) for VE/VCO2 . Tricuspid regurgitation predicted SED (β = -3.2, P = 0.03).

Conclusions: Right ventricular function assessed by echocardiography (RV-MPI and RV-FAC) is closely associated with exercise tolerance in patients with HFrEF. When the TAPSE/PASP ratio is available, this marker of RV-PA coupling becomes the stronger echocardiographic predictor of exercise capacity in this population, highlighting its potential role as a screening tool to identify patients with reduced exercise capacity and potentially triage them to formal peak VO2 and/or evaluation for advanced HF therapies.

Trial registration: ClinicalTrials.gov NCT00901212.

Keywords: Echocardiography; Exercise tolerance; Heart failure with reduced ejection fraction; RV to pulmonary arterial coupling; Right ventricular function.

Conflict of interest statement

Valéry Legris, M.D.: None declared.

Bernard Thibault, M.D.: Abbott Medical.

Jocelyn Dupuis, M.D.: None declared.

Michel White, M.D.: Arca Biopharma USA, Bayer, Jenssen, Novartis, Pfizer, BMS, Servier, BI, Orizon.

Anita W. Asgar, M.D., M.Sc.: Abbott Medical.

Annik Fortier, M.Sc.: None declared.

Celine Pitre, S.N.: None declared.

Nadia Bouabdallaoui, M.D.: AstraZeneca.

Christine Henri, M.D.: None declared.

Eileen O'Meara, M.D.: Norvartis, AZ, BI, Bayer, Astra Zeneca, Merck, BI, Abbott Medical, Corvia, Edwards Medical.

Anique Ducharme, M.D., M.Sc.: Abbott Medical, Akcea, Alnylam, Astra‐Zeneca, Novartis, Pfizer, Servier, Corvia.

© 2021 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

Figures

Figure 1
Figure 1
Right ventricular to pulmonary artery coupling as a measure of pulmonary artery compliance. Graphical representation of TAPSE (left) and PASP (right) measurements (top panel). PASP, pulmonary artery systolic pressure; TAPSE, tricuspid annular plane systolic excursion.
Figure 2
Figure 2
Relationship between TAPSE/PASP ratio and peak VO2 in HFrEF population (n = 100). R2 = 0.10. PASP, pulmonary artery systolic pressure; TAPSE, tricuspid annular plane systolic excursion.
Figure 3
Figure 3
ROC curve depicting the sensitivity and specificity of TAPSE/PASP to predict a peak VO2 result of ≤14 mL/kg/min. The AUC is 0.66 (P < 0.01), and the sensitivity and specificity are 0.63 and 0.62, respectively. The optimal threshold for a peak VO2 result of ≤14 mL/kg/min is TAPSE/PASP of 0.45. AUC, area under the curve; PASP, pulmonary artery systolic pressure; ROC, receiver operating characteristic; TAPSE, tricuspid annular plane systolic excursion.
Figure 4
Figure 4
ROC curve depicting the sensitivity and specificity of TAPSE/PASP to predict a peak VO2 ≤ 12 mL/kg/min. The AUC is 0.74 (P < 0.01), and the sensitivity and specificity are 0.91 and 0.50, respectively. The optimal threshold for a peak VO2 ≤ 12 mL/kg/min is TAPSE/PASP of 0.39. AUC, area under the curve; PASP, pulmonary artery systolic pressure; ROC, receiver operating characteristic; TAPSE, tricuspid annular plane systolic excursion.

References

    1. Keteyian SJ, Patel M, Kraus WE, Brawner CA, McConnell TR, Pina IL, Leifer ES, Fleg JL, Blackburn G, Fonarow GC, Chase PJ, Piner L, Vest M, O'Connor CM, Ehrman JK, Walsh MN, Ewald G, Bensimhon D, Russell SD, Investigators H‐A. Variables measured during cardiopulmonary exercise testing as predictors of mortality in chronic systolic heart failure. J Am Coll Cardiol 2016; 67: 780–789.
    1. Del Buono MG, Arena R, Borlaug BA, Carbone S, Canada JM, Kirkman DL, Garten R, Rodriguez‐Miguelez P, Guazzi M, Lavie CJ, Abbate A. Exercise intolerance in patients with heart failure: JACC state‐of‐the‐art review. J Am Coll Cardiol 2019; 73: 2209–2225.
    1. Mehra MR, Canter CE, Hannan MM, Semigran MJ, Uber PA, Baran DA, Danziger‐Isakov L, Kirklin JK, Kirk R, Kushwaha SS, Lund LH, Potena L, Ross HJ, Taylor DO, Verschuuren EA, Zuckermann A, International Society for Heart Lung Transplantation Infectious Diseases C , International Society for Heart Lung Transplantation Pediatric Transplantation C , International Society for Heart Lung Transplantation Heart F, Transplantation C . The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10‐year update. J Heart Lung Transplant 2016; 35: 1–23.
    1. Franciosa JA, Park M, Levine TB. Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am J Cardiol 1981; 47: 33–39.
    1. Ghio S, Guazzi M, Scardovi AB, Klersy C, Clemenza F, Carluccio E, Temporelli PL, Rossi A, Faggiano P, Traversi E, Vriz O, Dini FL. Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur J Heart Fail 2017; 19: 873–879.
    1. Guazzi M, Bandera F, Pelissero G, Castelvecchio S, Menicanti L, Ghio S, Temporelli PL, Arena R. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol 2013; 305: H1373–H1381.
    1. Guazzi M, Dixon D, Labate V, Beussink‐Nelson L, Bandera F, Cuttica MJ, Shah SJ. RV contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction: stratification of clinical phenotypes and outcomes. JACC Cardiovasc Imaging 2017; 10: 1211–1221.
    1. Teramoto K, Sengelov M, West E, Santos M, Nadruz W, Skali H, Shah AM. Association of pulmonary hypertension and right ventricular function with exercise capacity in heart failure. ESC Heart Fail 2020; 7: 1635–1644.
    1. Meyer P, Filippatos GS, Ahmed MI, Iskandrian AE, Bittner V, Perry GJ, White M, Aban IB, Mujib M, Dell'Italia LJ, Ahmed A. Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation 2010; 121: 252–258.
    1. Sallach JA, Tang WH, Borowski AG, Tong W, Porter T, Martin MG, Jasper SE, Shrestha K, Troughton RW, Klein AL. Right atrial volume index in chronic systolic heart failure and prognosis. JACC Cardiovasc Imaging 2009; 2: 527–534.
    1. Lewis GD, Shah RV, Pappagianopolas PP, Systrom DM, Semigran MJ. Determinants of ventilatory efficiency in heart failure: the role of right ventricular performance and pulmonary vascular tone. Circ Heart Fail 2008; 1: 227–233.
    1. Kusunose K, Yamada H, Nishio S, Ishii A, Hirata Y, Seno H, Saijo Y, Ise T, Yamaguchi K, Yagi S, Soeki T, Wakatsuki T, Sata M. RV myocardial strain during pre‐load augmentation is associated with exercise capacity in patients with chronic HF. JACC Cardiovasc Imaging 2017; 10: 1240–1249.
    1. Thibault B, Harel F, Ducharme A, White M, Ellenbogen KA, Frasure‐Smith N, Roy D, Philippon F, Dorian P, Talajic M, Dubuc M, Guerra PG, Macle L, Rivard L, Andrade J, Khairy P, Investigators L‐E. Cardiac resynchronization therapy in patients with heart failure and a QRS complex <120 milliseconds: the Evaluation of Resynchronization Therapy for Heart Failure (LESSER‐EARTH) trial. Circulation 2013; 127: 873–881.
    1. Thibault B, Harel F, Ducharme A, White M, Frasure‐Smith N, Roy D, Philippon F, Dorian P, Talajic M, Dubuc M, Gagne P, Guerra PG, Macle L, Rivard L, Khairy P. Evaluation of resynchronization therapy for heart failure in patients with a QRS duration greater than 120 ms (GREATER‐EARTH) trial: rationale, design, and baseline characteristics. Can J Cardiol 2011; 27: 779–786.
    1. Skaf S, Thibault B, Khairy P, O'Meara E, Fortier A, Vakulenko HV, Pitre C, White M, Ducharme A, Investigators E. Impact of left ventricular vs biventricular pacing on reverse remodelling: insights from the Evaluation of Resynchronization Therapy for Heart Failure (EARTH) trial. Can J Cardiol 2017; 33: 1274–1282.
    1. Lang RM, Badano LP, Mor‐Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 1–39 e14.
    1. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010; 23: 685–713 quiz 86‐8.
    1. Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Hamilton‐Wessler M, Froelicher VF. Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol 1991; 17: 1334–1342.
    1. Blanchet M, Sheppard R, Racine N, Ducharme A, Curnier D, Tardif JC, Sirois P, Lamoureux MC, De CJ, White M. Effects of angiotensin‐converting enzyme inhibitor plus irbesartan on maximal and submaximal exercise capacity and neurohumoral activation in patients with congestive heart failure. Am Heart J 2005; 149: 938–937.
    1. Guyatt GH, Thompson PJ, Berman LB, Sullivan MJ, Townsend M, Jones NL, Pugsley SO. How should we measure function in patients with chronic heart and lung disease? J Chronic Dis 1985; 38: 517–524.
    1. Anderson K, Prylutska H, Ducharme A, Finnerty V, Gregoire J, Marcotte F, Harel F. Evaluation of the right ventricle: comparison of gated blood‐pool single photon electron computed tomography and echocardiography with cardiac magnetic resonance. Int J Cardiol 2014; 171: 1–8.
    1. de Groote P, Millaire A, Foucher‐Hossein C, Nugue O, Marchandise X, Ducloux G, Lablanche JM. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol 1998; 32: 948–954.
    1. Di Salvo TG, Mathier M, Semigran MJ, Dec GW. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol 1995; 25: 1143–1153.
    1. Baker BJ, Wilen MM, Boyd CM, Dinh H, Franciosa JA. Relation of right ventricular ejection fraction to exercise capacity in chronic left ventricular failure. Am J Cardiol 1984; 54: 596–599.
    1. Tajima M, Nakayama A, Uewaki R, Mahara K, Isobe M, Nagayama M. Right ventricular dysfunction is associated with exercise intolerance and poor prognosis in ischemic heart disease. Heart Vessels 2019; 34: 385–392.
    1. Naeije R. Assessment of right ventricular function in pulmonary hypertension. Curr Hypertens Rep 2015; 17: 35.
    1. Lim HS, Theodosiou M. Exercise ventilatory parameters for the diagnosis of reactive pulmonary hypertension in patients with heart failure. J Card Fail 2014; 20: 650–657.
    1. Santas E, Palau P, Guazzi M, de la Espriella R, Minana G, Sanchis J, Bayes‐Genis A, Lupon J, Chorro FJ, Nunez J. Usefulness of right ventricular to pulmonary circulation coupling as an indicator of risk for recurrent admissions in heart failure with preserved ejection fraction. Am J Cardiol 2019; 124: 567–572.
    1. Guazzi M, Naeije R, Arena R, Corra U, Ghio S, Forfia P, Rossi A, Cahalin LP, Bandera F, Temporelli P. Echocardiography of right ventriculoarterial coupling combined with cardiopulmonary exercise testing to predict outcome in heart failure. Chest 2015; 148: 226–234.
    1. Padang R, Chandrashekar N, Indrabhinduwat M, Scott CG, Luis SA, Chandrasekaran K, Michelena HI, Nkomo VT, Pislaru SV, Pellikka PA, Kane GC. Aetiology and outcomes of severe right ventricular dysfunction. Eur Heart J 2020; 41: 1273–1282.
    1. Zaborska B, Smarz K, Makowska E, Czepiel A, Swiatkowski M, Jaxa‐Chamiec T, Budaj A. Echocardiographic predictors of exercise intolerance in patients with heart failure with severely reduced ejection fraction. Medicine (Baltimore) 2018; 97: e11523.
    1. Martens P, Verbrugge FH, Bertrand PB, Verhaert D, Vandervoort P, Dupont M, Tang WHW, Janssens S, Mullens W. Effect of cardiac resynchronization therapy on exercise‐induced pulmonary hypertension and right ventricular‐arterial coupling. Circ Cardiovasc Imaging 2018; 11: e007813.
    1. O'Neill JO, Young JB, Pothier CE, Lauer MS. Peak oxygen consumption as a predictor of death in patients with heart failure receiving beta‐blockers. Circulation 2005; 111: 2313–2318.
    1. Wang N, Fulcher J, Abeysuriya N, McGrady M, Wilcox I, Celermajer D, Lal S. Tricuspid regurgitation is associated with increased mortality independent of pulmonary pressures and right heart failure: a systematic review and meta‐analysis. Eur Heart J 2019; 40: 476–484.
    1. Ohara T, Iwano H, Thohan V, Kitzman DW, Upadhya B, Pu M, Little WC. Role of diastolic function in preserved exercise capacity in patients with reduced ejection fractions. J Am Soc Echocardiogr 2015; 28: 1184–1193.
    1. Kampaktsis PN, Albert BJ, Kim J, Xie LX, Brouwer LR, Tehrani NH, Villanueva M, Choi DY, Szulc M, Ratcliffe MB, Levine RA, Devereux RB, Weinsaft JW. Impact of mitral regurgitation severity and cause on effort tolerance‐integrated stress myocardial perfusion imaging and echocardiographic assessment of patients with known or suspected coronary artery disease undergoing exercise treadmill testing. J Am Heart Assoc 2019; 8: e010974.
    1. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Alexandru Popescu B, Waggoner AD, Houston T, Oslo N, Phoenix A, Nashville T, Hamilton OC, Uppsala S, Ghent LB, Cleveland O, Novara I, Rochester M, Bucharest R, St. Louis M. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2016; 17: 1321–1360.
    1. Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR, Woo MA, Tillisch JH. The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol 2001; 38: 789–795.
    1. McAuley PA, Keteyian SJ, Brawner CA, Dardari ZA, Al Rifai M, Ehrman JK, Al‐Mallah MH, Whelton SP, Blaha MJ. Exercise capacity and the obesity paradox in heart failure: the FIT (Henry Ford Exercise Testing) project. Mayo Clin Proc 2018; 93: 701–708.

Source: PubMed

3
Sottoscrivi