Endogenous GLP-1 mediates postprandial reductions in activation in central reward and satiety areas in patients with type 2 diabetes

Jennifer S ten Kulve, Dick J Veltman, Liselotte van Bloemendaal, Frederik Barkhof, Carolyn F Deacon, Jens J Holst, Robert J Konrad, John H Sloan, Madeleine L Drent, Michaela Diamant, Richard G IJzerman, Jennifer S ten Kulve, Dick J Veltman, Liselotte van Bloemendaal, Frederik Barkhof, Carolyn F Deacon, Jens J Holst, Robert J Konrad, John H Sloan, Madeleine L Drent, Michaela Diamant, Richard G IJzerman

Abstract

Aims/hypothesis: The central nervous system (CNS) is a major player in the regulation of food intake. The gut hormone glucagon-like peptide-1 (GLP-1) has been proposed to have an important role in this regulation by relaying information about nutritional status to the CNS. We hypothesised that endogenous GLP-1 has effects on CNS reward and satiety circuits.

Methods: This was a randomised, crossover, placebo-controlled intervention study, performed in a university medical centre in the Netherlands. We included patients with type 2 diabetes and healthy lean control subjects. Individuals were eligible if they were 40-65 years. Inclusion criteria for the healthy lean individuals included a BMI <25 kg/m(2) and normoglycaemia. Inclusion criteria for the patients with type 2 diabetes included BMI >26 kg/m(2), HbA1c levels between 42 and 69 mmol/mol (6.0-8.5%) and treatment for diabetes with only oral glucose-lowering agents. We assessed CNS activation, defined as blood oxygen level dependent (BOLD) signal, in response to food pictures in obese patients with type 2 diabetes (n = 20) and healthy lean individuals (n = 20) using functional magnetic resonance imaging (fMRI). fMRI was performed in the fasted state and after meal intake on two occasions, once during infusion of the GLP-1 receptor antagonist exendin 9-39, which was administered to block actions of endogenous GLP-1, and on the other occasion during saline (placebo) infusion. Participants were blinded for the type of infusion. The order of infusion was determined by block randomisation. The primary outcome was the difference in BOLD signal, i.e. in CNS activation, in predefined regions in the CNS in response to viewing food pictures.

Results: All patients were included in the analyses. Patients with type 2 diabetes showed increased CNS activation in CNS areas involved in the regulation of feeding (insula, amygdala and orbitofrontal cortex) in response to food pictures compared with lean individuals (p ≤ 0.04). Meal intake reduced activation in the insula in response to food pictures in both groups (p ≤ 0.05), but this was more pronounced in patients with type 2 diabetes. Blocking actions of endogenous GLP-1 significantly prevented meal-induced reductions in bilateral insula activation in response to food pictures in patients with type 2 diabetes (p ≤ 0.03).

Conclusions/interpretation: Our findings support the hypothesis that endogenous GLP-1 is involved in postprandial satiating effects in the CNS of obese patients with type 2 diabetes.

Trial registration: ClinicalTrials.gov NCT 01363609. Funding The study was funded in part by a grant from Novo Nordisk.

Trial registration: ClinicalTrials.gov NCT01363609.

Keywords: Food intake; GLP-1; Neuroimaging; Obesity; Type 2 diabetes; fMRI.

Figures

Fig. 1
Fig. 1
Study protocol. (a) Study design. Obese patients with type 2 diabetes and healthy lean individuals were studied in a placebo-controlled acute intervention study. The study consisted of two visits (random order): one with a GLP-1 receptor antagonist (exendin 9-39) infusion and one with a saline (placebo) infusion. Infusions started 1 h before the scan and lasted until the end of the visit. During each visit, two fMRI scans were performed: one while fasted and one 30 min after the meal intake. During fMRI, visual-food cues were presented. Blood samples and appetite-related scores on a 10-point Likert scale were taken at fixed time points. T1, structural MRI, T1-weighted sequence. (b) fMRI paradigm. One run comprised six blocks of 21 s each (seven pictures). Within one run, two blocks of each category were presented. Each MRI session included three runs
Fig. 2
Fig. 2
Between-group differences on CNS activation in response to viewing food pictures. (a) Axial and (b) coronal slices showing average differences in activation in brain regions where patients with diabetes vs healthy lean individuals had hyperactivation in response to viewing food pictures. The colour scale reflects the T-value of functional activity. Results are presented at the threshold of p < 0.05, FWE corrected on cluster extent. In the graphs, the BOLD signal intensity (effect size [AU]) for each group is plotted as mean and SEM for (c) the right and (d) left insula, (e) right OFC and (f) left amygdala. AU, arbitrary units; FWE, family-wise error; HC, healthy lean controls/individuals; T2DM, type 2 diabetes patients
Fig. 3
Fig. 3
Meal intake effects on CNS activation in response to viewing food pictures. Coronal slices showing areas where intake of the meal reduced activation in response to viewing food pictures 30 min after intake in (a) healthy lean individuals and (b) obese patients with diabetes. The colour scale reflects the T-value of functional activity. Results are presented at the threshold of p < 0.05, FWE corrected on cluster extent. In the graphs, the BOLD signal intensity (effect size [AU]) mean and SEM is plotted for healthy lean individuals in (c) the right insula and for patients with diabetes in (d) the right and (e) left insula. AU, arbitrary units; FWE, family-wise error; HC, healthy lean controls/individuals; T2DM, type 2 diabetes patients
Fig. 4
Fig. 4
Effects of GLP-1 receptor blockade on CNS responses. Axial and coronal slices showing average differences in activation in brain regions where blockade of endogenous GLP-1 effects with exendin 9-39 prevented reducing effects of meal intake on activation to viewing food pictures in (a) healthy lean individuals (right insula p = 0.08) and (b) patients with type 2 diabetes (bilateral insula p < 0.05). The colour scale reflects the T-value of functional activity. In the graphs, the BOLD signal intensity (effect size [AU]) mean and SEM for healthy lean individuals in (c) the right insula and in patients with diabetes in (d) the right and (e) left insula. The effect of exendin 9-39 in patients with diabetes in response to viewing high-energy food pictures is shown for (f) the right OFC (p = 0.04) and (g) left caudate nucleus (p = 0.06) and left insula (p = 0.08). In the graphs, the signal intensity is plotted for (h) the right OFC, (i) left caudate nucleus and (j) left insula. AU, arbitrary units; ex9-39, exendin 9-39; high en., high-energy food pictures; plac, placebo
Fig. 5
Fig. 5
Glucose and plasma hormone levels. Levels of (a) glucose, (b) total GLP-1, (c) insulin and (d) glucagon during placebo (black) and exendin 9-39 (white) infusion in healthy lean individuals (circles) and obese patients with diabetes (squares). Data are mean ± SEM. Glucose levels were higher in diabetic patients vs healthy lean individuals (p < 0.001). Exendin 9-39 administration had no effect on glucose levels in healthy lean individuals (p = 0.4), but increased glucose levels in diabetic patients (p = 0.001). GLP-1 levels were higher during exendin 9-39 vs placebo administration (healthy, lean p = 0.04; diabetes p = 0.002). Insulin levels did not differ between groups nor between infusions in both groups (p ≥ 0.09). Glucagon levels were significantly higher in diabetic vs healthy lean individuals, and in both groups during exendin 9-39 vs placebo administration (p ≤ 0.004)

References

    1. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443:289–295. doi: 10.1038/nature05026.
    1. Chaudhri OB, Wynne K, Bloom SR. Can gut hormones control appetite and prevent obesity? Diabetes Care. 2008;31(Suppl 2):S284–S289. doi: 10.2337/dc08-s269.
    1. Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet. 1987;2:1300–1304. doi: 10.1016/S0140-6736(87)91194-9.
    1. Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998;101:515–520. doi: 10.1172/JCI990.
    1. de Rodriquez FF, Navarro M, Alvarez E, et al. Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. Metabolism. 2000;49:709–717. doi: 10.1053/meta.2000.6251.
    1. Szayna M, Doyle ME, Betkey JA, et al. Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology. 2000;141:1936–1941. doi: 10.1210/endo.141.6.7490.
    1. Verdich C, Flint A, Gutzwiller JP, et al. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab. 2001;86:4382–4389.
    1. Vilsboll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771. doi: 10.1136/bmj.d7771.
    1. Shugrue PJ, Lane M, Merchenthaler I. Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus. Endocrinology. 1996;137:5159–5162.
    1. Turton MD, O'Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379:69–72. doi: 10.1038/379069a0.
    1. Meeran K, O'Shea D, Edwards CM, et al. Repeated intracerebroventricular administration of glucagon-like peptide-1-(7-36) amide or exendin-(9-39) alters body weight in the rat. Endocrinology. 1999;140:244–250.
    1. Merchenthaler I, Lane M, Shughrue P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol. 1999;403:261–280. doi: 10.1002/(SICI)1096-9861(19990111)403:2<261::AID-CNE8>;2-5.
    1. Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology. 2009;150:1680–1687. doi: 10.1210/en.2008-1045.
    1. Secher A, Jelsing J, Baquero AF, et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest. 2014;124:4473–4488. doi: 10.1172/JCI75276.
    1. Bloemendaal Lv, Ten Kulve JS, la Fleur SE, IJzerman RG, Diamant M (2014) Effects of GLP-1 on appetite and body weight: focus on the central nervous system. J Endocrinol 221:1–16
    1. Patterson JT, Ottaway N, Gelfanov VM, et al. A novel human-based receptor antagonist of sustained action reveals body weight control by endogenous GLP-1. ACS Chem Biol. 2011;6:135–145. doi: 10.1021/cb1002015.
    1. Steinert RE, Schirra J, Meyer-Gerspach AC, et al. Effect of glucagon-like peptide-1 receptor antagonism on appetite and food intake in healthy men. Am J Clin Nutr. 2014;100:514–523. doi: 10.3945/ajcn.114.083246.
    1. Barrera JG, Jones KR, Herman JP, D'Alessio DA, Woods SC, Seeley RJ. Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function. J Neurosci. 2011;31:3904–3913. doi: 10.1523/JNEUROSCI.2212-10.2011.
    1. van Bloemendaal L, IJzerman RG, Ten Kulve JS, et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes. 2014;63:4186–4196. doi: 10.2337/db14-0849.
    1. Rothemund Y, Preuschhof C, Bohner G, et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage. 2007;37:410–421. doi: 10.1016/j.neuroimage.2007.05.008.
    1. Stoeckel LE, Weller RE, Cook EW, III, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage. 2008;41:636–647. doi: 10.1016/j.neuroimage.2008.02.031.
    1. LaBar KS, Gitelman DR, Parrish TB, Kim YH, Nobre AC, Mesulam MM. Hunger selectively modulates corticolimbic activation to food stimuli in humans. Behav Neurosci. 2001;115:493–500. doi: 10.1037/0735-7044.115.2.493.
    1. Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst JJ. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes. 1994;43:535–539. doi: 10.2337/diab.43.4.535.
    1. Sloan JH, Siegel RW, Ivanova-Cox YT, Watson DE, Deeg MA, Konrad RJ. A novel high-sensitivity electrochemiluminescence (ECL) sandwich immunoassay for the specific quantitative measurement of plasma glucagon. Clin Biochem. 2012;45:1640–1644. doi: 10.1016/j.clinbiochem.2012.07.111.
    1. Green BD, Irwin N, Gault VA, Bailey CJ, O'Harte FP, Flatt PR. Chronic treatment with exendin(9-39)amide indicates a minor role for endogenous glucagon-like peptide-1 in metabolic abnormalities of obesity-related diabetes in ob/ob mice. J Endocrinol. 2005;185:307–317. doi: 10.1677/joe.1.05876.
    1. Wang Z, Wang RM, Owji AA, Smith DM, Ghatei MA, Bloom SR. Glucagon-like peptide-1 is a physiological incretin in rat. J Clin Invest. 1995;95:417–421. doi: 10.1172/JCI117671.
    1. Schirra J, Sturm K, Leicht P, Arnold R, Goke B, Katschinski M. Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans. J Clin Invest. 1998;101:1421–1430. doi: 10.1172/JCI1349.
    1. Melhorn SJ, Tyagi V, Smeraglio A, Roth CL, Schur EA. Initial evidence that GLP-1 receptor blockade fails to suppress postprandial satiety or promote food intake in humans. Appetite. 2014;82C:85–90. doi: 10.1016/j.appet.2014.07.009.
    1. Pannacciulli N, Le DS, Salbe AD, et al. Postprandial glucagon-like peptide-1 (GLP-1) response is positively associated with changes in neuronal activity of brain areas implicated in satiety and food intake regulation in humans. Neuroimage. 2007;35:511–517. doi: 10.1016/j.neuroimage.2006.12.035.
    1. Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain. 2001;124:1720–1733. doi: 10.1093/brain/124.9.1720.
    1. Pelchat ML, Johnson A, Chan R, Valdez J, Ragland JD. Images of desire: food-craving activation during fMRI. Neuroimage. 2004;23:1486–1493. doi: 10.1016/j.neuroimage.2004.08.023.
    1. Hare TA, O'Doherty J, Camerer CF, Schultz W, Rangel A. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J Neurosci. 2008;28:5623–5630. doi: 10.1523/JNEUROSCI.1309-08.2008.
    1. Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology. 2012;153:647–658. doi: 10.1210/en.2011-1443.
    1. Dickson SL, Shirazi RH, Hansson C, Bergquist F, Nissbrandt H, Skibicka KP. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors. J Neurosci. 2012;32:4812–4820. doi: 10.1523/JNEUROSCI.6326-11.2012.
    1. Vilsboll T, Agerso H, Krarup T, Holst JJ. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab. 2003;88:220–224. doi: 10.1210/jc.2002-021053.
    1. Plamboeck A, Veedfald S, Deacon CF et al (2013) The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am J Physiol Gastrointest Liver Physiol
    1. Inokuchi A, Oomura Y, Nishimura H. Effect of intracerebroventricularly infused glucagon on feeding behavior. Physiol Behav. 1984;33:397–400. doi: 10.1016/0031-9384(84)90160-4.
    1. Page KA, Seo D, Belfort-DeAguiar R, et al. Circulating glucose levels modulate neural control of desire for high-calorie foods in humans. J Clin Invest. 2011;121:4161–4169. doi: 10.1172/JCI57873.
    1. DeSilva A, Salem V, Long CJ, et al. The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 2011;14:700–706. doi: 10.1016/j.cmet.2011.09.010.
    1. Gutzwiller JP, Drewe J, Goke B, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol. 1999;276:R1541–R1544.
    1. Naslund E, Barkeling B, King N, et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord. 1999;23:304–311. doi: 10.1038/sj.ijo.0800818.
    1. Astrup A, Rossner S, Van GL, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet. 2009;374:1606–1616. doi: 10.1016/S0140-6736(09)61375-1.
    1. Rosenstock J, Klaff LJ, Schwartz S, et al. Effects of exenatide and lifestyle modification on body weight and glucose tolerance in obese subjects with and without pre-diabetes. Diabetes Care. 2010;33:1173–1175. doi: 10.2337/dc09-1203.
    1. Flint A, Raben A, Ersboll AK, Holst JJ, Astrup A. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int J Obes Relat Metab Disord. 2001;25:781–792. doi: 10.1038/sj.ijo.0801627.
    1. Tomasi D, Wang GJ, Wang R, et al. Association of body mass and brain activation during gastric distention: implications for obesity. PLoS.One. 2009;4:e6847. doi: 10.1371/journal.pone.0006847.
    1. Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol. 1997;273:E981–E988.
    1. Naslund E, Gutniak M, Skogar S, Rossner S, Hellstrom PM. Glucagon-like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am J Clin Nutr. 1998;68:525–530.
    1. Deane AM, Nguyen NQ, Stevens JE, et al. Endogenous glucagon-like peptide-1 slows gastric emptying in healthy subjects, attenuating postprandial glycemia. J Clin Endocrinol Metab. 2010;95:215–221. doi: 10.1210/jc.2009-1503.
    1. Salehi M, Vahl TP, D'Alessio DA. Regulation of islet hormone release and gastric emptying by endogenous glucagon-like peptide 1 after glucose ingestion. J Clin Endocrinol Metab. 2008;93:4909–4916. doi: 10.1210/jc.2008-0605.
    1. Nicolaus M, Brodl J, Linke R, Woerle HJ, Goke B, Schirra J. Endogenous GLP-1 regulates postprandial glycemia in humans: relative contributions of insulin, glucagon, and gastric emptying. J Clin Endocrinol Metab. 2011;96:229–236. doi: 10.1210/jc.2010-0841.

Source: PubMed

3
Sottoscrivi