Moderate glucose control results in less negative nitrogen balances in medical intensive care unit patients: a randomized, controlled study

Chien-Wei Hsu, Shu-Fen Sun, Shoa-Lin Lin, Hsiu-Hua Huang, Kam-Fai Wong, Chien-Wei Hsu, Shu-Fen Sun, Shoa-Lin Lin, Hsiu-Hua Huang, Kam-Fai Wong

Abstract

Introduction: Hyperglycemia and protein loss are common in critically ill patients. Insulin can be used to lower blood glucose and inhibit proteolysis. The impact of moderate insulin therapy on protein metabolism in critically ill patients has not been evaluated. We compared urinary nitrogen excretion, nitrogen balance, serum albumin concentrations, prealbumin concentrations, and clinical outcomes between patients receiving moderate insulin therapy (MIT) and conventional insulin therapy (CIT) in a medical ICU.

Methods: Patients were randomly divided into groups and treated with MIT (glucose target 120 to 140 mg/dl) or CIT (glucose target 180 to 200 mg/dl). Calories and protein intake were recorded each day. On days 3, 7 and 14, the 24-hour urinary nitrogen excretion, nitrogen balance, and serum albumin and prealbumin concentrations were measured. Clinical outcomes data were collected.

Results: A total of 112 medical ICU patients were included, with 55 patients randomized to the MIT group and 57 patients randomized to the CIT group. Patients treated with MIT showed a trend towards increased nitrogen balance (P = 0.070), significantly lower urinary nitrogen excretion (P = 0.027), and higher serum albumin (P = 0.047) and prealbumin (P = 0.001) concentrations than patients treated with CIT. The differences between the two groups were most significant on day 3, when all factors showed significant differences (P < 0.05).

Conclusions: Moderate glucose control results in less negative nitrogen balances in medical ICU patients. Differences are more significant in the early stages compared with the late stages of critical illness.

Trial registration: ClinicalTrial.Gov NCT 01227148.

Trial registration: ClinicalTrials.gov NCT01227148.

Figures

Figure 1
Figure 1
Assessment, randomization, and follow-up of the study patients. For detailed characteristics of randomized patients, see Table 1.
Figure 2
Figure 2
Serum creatinine, creatinine clearance and 24-hour urine output on days 0, 3, 7, and 14. Top, serum creatinine; middle, creatinine clearance; bottom, 24-hour urine output. Filled bars, patients receiving moderate insulin therapy (MIT group); open bars, patients receiving conventional insulin therapy (CIT group).
Figure 3
Figure 3
Daily protein, calories intake, mean blood glucose levels and insulin dose. Daily protein intake (top), daily caloric intake (second from top), mean blood glucose levels (second from bottom), and insulin dose (bottom) during the 2-week study period in the medical ICU. Filled bars, moderate insulin therapy (MIT) group; open bars, conventional insulin therapy (CIT) group.
Figure 4
Figure 4
Differences in mean daily insulin doses between moderate and conventional insulin therapy. Differences in mean daily insulin doses between the moderate insulin therapy group and the conventional insulin therapy group.
Figure 5
Figure 5
Twenty-four-hour urinary urea nitrogen and nitrogen balance in patients receiving moderate or conventional insulin therapy. Top, 24-hour urinary urea nitrogen (UUN); bottom, nitrogen balance. Data represent the mean ± standard deviation. A generalized linear model of repeated measurements showed statistically significant differences between the two groups: #P = 0.027 for entire study period, *P < 0.05 for day 3. BSA, body surface area; CIT, conventional insulin therapy; MIT, moderate insulin therapy.
Figure 6
Figure 6
Serum albumin and prealbumin levels in patients receiving moderate or conventional insulin therapy. Top, serum albumin; bottom, serum prealbumin. Data represent the mean ± standard deviation. A generalized linear model of repeated measurements showed statistically significant differences: #P = 0.047 for entire study period, ##P = 0.001 for entire study period, *P < 0.05 for day 3. CIT, conventional insulin therapy; MIT, moderate insulin therapy.

References

    1. Levetan CS, Passaro M, Jablonski K, Kass M, Ratner RE. Unrecognized diabetes among hospitalized patients. Diabetes Care. 1998;16:246–249. doi: 10.2337/diacare.21.2.246.
    1. Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab. 2002;16:978–982. doi: 10.1210/jc.87.3.978.
    1. Mizock BA. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Pract Res Clin Endocrinol Metab. 2001;16:533–551. doi: 10.1053/beem.2001.0168.
    1. Robinson LE, van Soeren MH. Insulin resistance and hyperglycemia in critical illness: role of insulin in glycemic control. AACN Clin Issues. 2004;16:45–62. doi: 10.1097/00044067-200401000-00004.
    1. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;16:1359–1367. doi: 10.1056/NEJMoa011300.
    1. McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit Care Clin. 2001;16:107–124. doi: 10.1016/S0749-0704(05)70154-8.
    1. Van den Berghe G, Wouters PJ, Bouillon R, Weekers F, Verwaest C, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P. Outcome benefit of intensive insulin therapy in the critically ill: insulin dose vs. glycemic control. Crit Care Med. 2003;16:359–366. doi: 10.1097/01.CCM.0000045568.12881.10.
    1. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;16:449–461. doi: 10.1056/NEJMoa052521.
    1. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loeffler M, Reinhart K. German Competence Network Sepsis (SepNet) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;16:125–139. doi: 10.1056/NEJMoa070716.
    1. De La Rosa Gdel C, Donado JH, Restrepo AH, Quintero AM, González LG, Saldarriaga NE, Bedoya M, Toro JM, Velásquez JB, Valencia JC, Arango CM, Aleman PH, Vasquez EM, Chavarriaga JC, Yepes A, Pulido W, Cadavid CA. Grupo de Investigacion en Cuidado intensivo GICI-HPTU. Strict glycaemic control in patients hospitalised in a mixed medical and surgical intensive care unit: a randomised clinical trial. Crit Care. 2008;16:R120. doi: 10.1186/cc7017.
    1. Arabi YM, Dabbagh OC, Tamim HM, Al-Shimemeri AA, Memish ZA, Haddad SH, Syed SJ, Giridhar HR, Rishu AH, Al-Daker MO, Kahoul SH, Britts RJ, Sakkijha MH. Intensive versus conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. Crit Care Med. 2008;16:3190–3197. doi: 10.1097/CCM.0b013e31818f21aa.
    1. Preiser JC, Devos P, Ruiz-Santana S, Mélot C, Annane D, Groeneveld J, Iapichino G, Leverve X, Nitenberg G, Singer P, Wernerman J, Joannidis M, Stecher A, Chioléro R. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009;16:1738–1748. doi: 10.1007/s00134-009-1585-2.
    1. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hébert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;16:1283–1297.
    1. Bhamidipati CM, LaPar DJ, Stukenborg GJ, Morrison CC, Kern JA, Kron IL, Ailawadi G. Superiority of moderate control of hyperglycemia to tight control in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2011;16:543–551. doi: 10.1016/j.jtcvs.2010.10.005.
    1. Jeschke MG, Kraft R, Emdad F, Kulp GA, Williams FN, Herndon DN. Glucose control in severely thermally injured pediatric patients: what glucose range should be the target? Ann Surg. 2010;16:521–528.
    1. Hasselgren PO, James JH, Benson DW, Hall-Angerås M, Angerås U, Hiyama DT, Li S, Fischer JE. Total and myofibrillar protein breakdown in different types of rat skeletal muscle: effects of sepsis and regulation by insulin. Metabolism. 1989;16:634–640. doi: 10.1016/0026-0495(89)90100-5.
    1. Vary TC, Kimball SR. Sepsis-induced changes in protein synthesis: differential effects on fast- and slow-twitch muscles. Am J Physiol. 1992;16:C1513–C1519.
    1. Btaiche IF, Chan LN, Pleva M, Kraft MD. Critical illness, gastrointestinal complications, and medication therapy during enteral feeding in critically ill adult patients. Nutr Clin Pract. 2010;16:32–49. doi: 10.1177/0884533609357565.
    1. Almdal TP, Vilstrup H. Strict insulin therapy normalises organ nitrogen contents and the capacity of urea nitrogen synthesis in experimental diabetes in rats. Diabetologia. 1988;16:114–118. doi: 10.1007/BF00395558.
    1. Woolfson AM, Heatley RV, Allison SP. Insulin to inhibit protein catabolism after injury. N Engl J Med. 1979;16:14–17. doi: 10.1056/NEJM197901043000104.
    1. Shiozaki T, Tasaki O, Ohnishi M, Nishimura T, Hiraide A, Shimazu T, Yoshioka T, Sugimoto H. Paradoxical positive nitrogen balance in burn patients receiving high-dose administration of insulin for nutritional care. Surgery. 1997;16:527–533. doi: 10.1016/S0039-6060(97)90124-0.
    1. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute Dialysis Quality Initiative Workgroup. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) group. Crit Care. 2004;16:R204–R212. doi: 10.1186/cc2872.
    1. Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P. Canadian Critical Care Clinical Practice Guidelines Committee. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adults patients. JPEN J Parenter Enteral Nutr. 2003;16:355–373. doi: 10.1177/0148607103027005355.
    1. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM. Surviving Sepsis Campaign Management Guideline Committee. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;16:858–873. doi: 10.1097/01.CCM.0000117317.18092.E4.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. International Sepsis Definitions Conference. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003;16:530–538.
    1. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41. doi: 10.1159/000180580.
    1. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control. 1988;16:128–140. doi: 10.1016/0196-6553(88)90053-3.
    1. Blackburn GL, Bistrian BR, Maini BS, Schlamm HT, Smith MF. Nutritional and metabolic assessment of the hospitalized patient. JPEN J Parenter Enteral Nutr. 1977;16:11–22. doi: 10.1177/014860717700100111.
    1. Pingleton SK. Nutrition in chronic critical illness. Clin Chest Med. 2001;16:149–163. doi: 10.1016/S0272-5231(05)70031-9.
    1. Japur CC, Monteiro JP, Marchini JS, Garcia RW, Basile-Filho A. Can an adequate energy intake be able to reverse the negative nitrogen balance in mechanically ventilated critically ill patients? J Crit Care. 2010;16:445–450. doi: 10.1016/j.jcrc.2009.05.009.
    1. Jivnani S, Iyer S, Umakumar K, Gore MA. Impact of enteral nutrition on nitrogen balance in patients of trauma. J Emerg Trauma Shock. 2010;16:109–114. doi: 10.4103/0974-2700.62101.
    1. Bellomo R, Seacombe J, Daskalakis M, Farmer M, Wright C, Parkin G, Boyce N. A prospective comparative study of moderate versus high protein intake for critically ill patients with acute renal failure. Ren Fail. 1997;16:111–120. doi: 10.3109/08860229709026265.
    1. Castellino P, Luzi L, Simonson DC, Haymond M, DeFronzo RA. Effect of insulin and plasma amino acid concentrations on leucine metabolism in man. Role of substrate availability on estimates of whole body protein synthesis. J Clin Invest. 1987;16:1784–1793. doi: 10.1172/JCI113272.
    1. Fukagawa NK, Minaker KL, Rowe JW, Goodman MN, Matthews DE, Bier DM, Young VR. Insulin-mediated reduction of whole body protein breakdown. Dose-response effects on leucine metabolism in postabsorptive men. J Clin Invest. 1985;16:2306–2311. doi: 10.1172/JCI112240.
    1. Nair KS, Ford GC, Ekberg K, Fernqvist-Forbes E, Wahren J. Protein dynamics in whole body and in splanchnic and leg tissues in type I diabetic patients. J Clin Invest. 1995;16:2926–2937. doi: 10.1172/JCI118000.
    1. Biolo G, Declan Fleming RY, Wolfe RR. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest. 1995;16:811–819. doi: 10.1172/JCI117731.
    1. Tessari P, Inchiostro S, Biolo G, Trevisan R, Fantin G, Marescotti MC, Iori E, Tiengo A, Crepaldi G. Differential effects of hyperinsulinemia and hyperaminoacidemia on leucine-carbon metabolism in vivo. Evidence for distinct mechanisms in regulation of net amino acid deposition. J Clin Invest. 1987;16:1062–1069. doi: 10.1172/JCI112919.
    1. Van den Berghe G. How dose blood glucose control with insulin save lives in intensive care? J Clin Invest. 2004;16:1187–1195.
    1. Brismar K, Fernqvist-Forbes E, Wahren J, Hall K. Effect of insulin on the hepatic production of insulin-like growth factor-binding protein-1 (IGFBP-1), IGFBP-3, and IGF-I in insulin-dependent diabetes. J Clin Endocrinol Metab. 1994;16:872–878. doi: 10.1210/jc.79.3.872.
    1. Núñez M, Urdaneta E, Santidrián S. Effect of insulin-like growth factor-I on nitrogen balance and intestinal galactose transport in rats with moderate liver cirrhosis. Br J Nutr. 2003;16:929–937. doi: 10.1079/BJN2003974.
    1. Rennie MJ. Muscle protein turnover and the wasting due to injury and disease. Br Med Bull. 1985;16:257–264.
    1. Wilmore DW. Catabolic illness. Strategies for enhancing recovery. N Engl J Med. 1991;16:695–702. doi: 10.1056/NEJM199109053251005.
    1. Van den Berghe G, de Zegher F, Veldhuis JD, Wouters P, Awouters M, Verbruggen W, Schetz M, Verwaest C, Lauwers P, Bouillon R, Bowers CY. The somatotropic axis in critical illness: effect of continuous growth hormone (GH)-releasing hormone and GH-relaesing peptide-2 infusion. J Clin Endocrinol Metab. 1997;16:590–599. doi: 10.1210/jc.82.2.590.
    1. Frost RA, Lang CH, Gelato MC. Transient exposure of human myoblasts to tumor necrosis factor-alpha inhibits serum and insulin-like growth factors-I stimulated protein synthesis. Endocrinology. 1997;16:4153–4159. doi: 10.1210/en.138.10.4153.
    1. Timmins AC, Cotterill AM, Hughes SC, Holly JM, Ross RJ, Blum W, Hinds CJ. Critical illness is associated with low circulating concentrations of insulin-like growth factors-I and -II, alterations in insulin-like growth hormone factors binding proteins, and induction of an insulin-like growth factor binding protein 3 protease. Crit Care Med. 1996;16:1460–1466. doi: 10.1097/00003246-199609000-00006.
    1. Jeschke MG, Einspanier R, Klein D, Jauch KW. Insulin attenuates the systemic inflammatory response to thermal trauma. Mol Med. 2002;16:443–450.
    1. Jeschke MG, Klein D, Herndon DN. Insulin treatment improves the systemic inflammatory reaction to severe trauma. Ann Surg. 2004;16:553–560. doi: 10.1097/.
    1. Don BR, Kaysen G. Serum albumin: relationship to inflammation and nutrition. Semin Dial. 2004;16:432–437. doi: 10.1111/j.0894-0959.2004.17603.x.
    1. Wolfe RR. Regulation of skeletal muscle protein metabolism in catabolic states. Curr Opin Clin Nutr Metab Care. 2005;16:61–65. doi: 10.1097/00075197-200501000-00009.
    1. Flakoll PJ, Hill JO, Abumrad NN. Acute hyperglycemia enhances proteolysis in normal man. Am J Physiol. 1993;16:E715–E721.
    1. Whyte MB, Jackson NC, Shojaee-Moradie F, Treacher DF, Beale RJ, Jones RH, Umpleby AM. Metabolic effects of intensive insulin therapy in critically ill patients. Am J Physiol Endocrinol Metab. 2010;16:E697–E705. doi: 10.1152/ajpendo.00407.2009.
    1. Boulétreau P, Chassard D, Allaouchiche B, Dumont JC, Auboyer C, Bertin-Maghit M, Bricard H, Ecochard R, Rangaraj J, Chambrier C, Schneid C, Cynober L. Glucose-lipid ratio is a determinant of nitrogen balance during total parenteral nutrition in critically ill patients: a prospective, randomized, multicenter blind trial with an intention-to-treat analysis. Intensive Care Med. 2005;16:1394–1400. doi: 10.1007/s00134-005-2771-5.
    1. Wiener RS, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA. 2008;16:933–944. doi: 10.1001/jama.300.8.933.

Source: PubMed

3
Sottoscrivi