Neural markers of errors as endophenotypes in neuropsychiatric disorders

Dara S Manoach, Yigal Agam, Dara S Manoach, Yigal Agam

Abstract

Learning from errors is fundamental to adaptive human behavior. It requires detecting errors, evaluating what went wrong, and adjusting behavior accordingly. These dynamic adjustments are at the heart of behavioral flexibility and accumulating evidence suggests that deficient error processing contributes to maladaptively rigid and repetitive behavior in a range of neuropsychiatric disorders. Neuroimaging and electrophysiological studies reveal highly reliable neural markers of error processing. In this review, we evaluate the evidence that abnormalities in these neural markers can serve as sensitive endophenotypes of neuropsychiatric disorders. We describe the behavioral and neural hallmarks of error processing, their mediation by common genetic polymorphisms, and impairments in schizophrenia, obsessive-compulsive disorder, and autism spectrum disorders. We conclude that neural markers of errors meet several important criteria as endophenotypes including heritability, established neuroanatomical and neurochemical substrates, association with neuropsychiatric disorders, presence in syndromally-unaffected family members, and evidence of genetic mediation. Understanding the mechanisms of error processing deficits in neuropsychiatric disorders may provide novel neural and behavioral targets for treatment and sensitive surrogate markers of treatment response. Treating error processing deficits may improve functional outcome since error signals provide crucial information for flexible adaptation to changing environments. Given the dearth of effective interventions for cognitive deficits in neuropsychiatric disorders, this represents a potentially promising approach.

Keywords: anterior cingulate; error processing; error-related negativity; imaging genetics; response monitoring.

Figures

Figure 1
Figure 1
Trial-by-trial adjustments of reaction time (RT). (A) A schematic depiction of the SATO function. The circle denotes the optimum: the point at which the highest accuracy is achieved at the fastest possible speed. Beyond this point, speedier responses entail a cost (trade-off) in reduced accuracy. (B) Mean saccadic RT during an antisaccade task as a function of trial position relative to an error trial. Post-error slowing (PES) is defined as the difference in RT between the trial following the error (1Post) and the trial preceding the error (1Pre). Error bars represent the standard error of the mean.
Figure 2
Figure 2
The error-related negativity (ERN). (A) Grand average waveforms for correct (black) and error (red) antisaccade trials, time-locked to the onset of the saccade. (B) Difference waveform, obtained by subtracting the correct waveform from the error waveform. (C) Scalp distribution of the ERN, displayed on a template head model. Adapted from Agam et al. (2011).
Figure 3
Figure 3
Error-related activation in the anterior cingulate cortex (ACC). Statistical maps, displayed on medial cortical surface templates, show activation on correct trials vs. a fixation baseline (top), error vs. fixation (middle) and error vs. correct (bottom). Gray masks cover subcortical regions in which activation is displaced in a surface rendering. The dACC and rACC are outlined in blue and red, respectively. Adapted from Polli et al. (2005).
Figure 4
Figure 4
Model of a causal pathway for error processing. Specific genetic polymorphisms affect dopamine neurotransmission, which may interact with a neuropsychiatric disorder to affect neuroimaging-based endophenotypes. These endophenotypes, in turn, contribute to the expression of phenotypes, which may influence whether a psychiatric diagnosis is given.
Figure 5
Figure 5
A schematic illustration of the endophenotype concept. Shaded areas indicate the presence of the endophenotype in affected patients, individuals with spectrum disorders, syndromally-unaffected family members and the general population. Criteria taken from Gould and Gottesman (2006).

References

    1. Agam Y., Carey C., Barton J. J. S., Dyckman K. A., Lee A. K. C., Vangel M., et al. (2013). Network dynamics underlying speed-accuracy trade-offs in response to errors. PLoS One. (in press).
    1. Agam Y., Hamalainen M. S., Lee A. K., Dyckman K. A., Friedman J. S., Isom M., et al. (2011). Multimodal neuroimaging dissociates hemodynamic and electrophysiological correlates of error processing. Proc. Natl. Acad. Sci. U.S.A. 108, 17556–17561 10.1073/pnas.1103475108
    1. Agartz I., Andersson J. L., Skare S. (2001). Abnormal brain white matter in schizophrenia: a diffusion tensor imaging study. Neuroreport 12, 2251–2254 10.1097/00001756-200107200-00041
    1. Aharoni E., Vincent G. M., Harenski C. L., Calhoun V. D., Sinnott-Armstrong W., Gazzaniga M. S., et al. (2013). Neuroprediction of future rearrest. Proc. Natl. Acad. Sci. U.S.A. 110, 6223–6228 10.1073/pnas.1219302110
    1. Alain C., McNeely H. E., He Y., Christensen B. K., West R. (2002). Neurophysiological evidence of error-monitoring deficits in patients with schizophrenia. Cereb. Cortex 12, 840–846 10.1093/cercor/12.8.840
    1. Albrecht B., Brandeis D., Uebel H., Heinrich H., Mueller U. C., Hasselhorn M., et al. (2008). Action monitoring in boys with attention-deficit/hyperactivity disorder, their nonaffected siblings, and normal control subjects: evidence for an endophenotype. Biol. Psychiatry 64, 615–625 10.1016/j.biopsych.2007.12.016
    1. Allen N. C., Bagade S., McQueen M. B., Ioannidis J. P., Kavvoura F. K., Khoury M. J., et al. (2008). Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat. Genet. 40, 827–834 10.1038/ng.171
    1. Althaus M., Groen Y., Wijers A. A., Minderaa R. B., Kema I. P., Dijck J. D., et al. (2010). Variants of the SLC6A3 (DAT1) polymorphism affect performance monitoring-related cortical evoked potentials that are associated with ADHD. Biol. Psychol. 85, 19–32 10.1016/j.biopsycho.2010.04.007
    1. Althaus M., Groen Y., Wijers A. A., Mulder L. J., Minderaa R. B., Kema I. P., et al. (2009). Differential effects of 5-HTTLPR and DRD2/ANKK1 polymorphisms on electrocortical measures of error and feedback processing in children. Clin. Neurophysiol. 120, 93–107 10.1016/j.clinph.2008.10.012
    1. Andalman A. S., Fee M. S. (2009). A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors. Proc. Natl. Acad. Sci. U.S.A. 106, 12518–12523 10.1073/pnas.0903214106
    1. Anokhin A. P., Golosheykin S., Heath A. C. (2008). Heritability of frontal brain function related to action monitoring. Psychophysiology 45, 524–534 10.1111/j.1469-8986.2008.00664.x
    1. Ardekani B. A., Nierenberg J., Hoptman M. J., Javitt D. C., Lim K. O. (2003). MRI study of white matter diffusion anisotropy in schizophrenia. Neuroreport 14, 2025–2029 10.1097/00001756-200311140-00004
    1. Asghari V., Sanyal S., Buchwaldt S., Paterson A., Jovanovic V., Van Tol H. H. (1995). Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J. Neurochem. 65, 1157–1165 10.1046/j.1471-4159.1995.65031157.x
    1. Barnea-Goraly N., Kwon H., Menon V., Eliez S., Lotspeich L., Reiss A. L. (2004). White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol. Psychiatry 55, 323–326 10.1016/j.biopsych.2003.10.022
    1. Bates A. T., Kiehl K. A., Laurens K. R., Liddle P. F. (2002). Error-related negativity and correct response negativity in schizophrenia. Clin. Neurophysiol. 113, 1454–1463 10.1016/S1388-2457(02)00154-2
    1. Baxter M. G., Murray E. A. (2002). The amygdala and reward. Nat. Rev. Neurosci. 3, 563–573 10.1038/nrn875
    1. Benes F. M. (1993). Neurobiological investigations in cingulate cortex of schizophrenic brain. Schizophr. Bull. 19, 537–549 10.1093/schbul/19.3.537
    1. Benes F. M. (2000). Emerging principles of altered neural circuitry in schizophrenia. Brain Res. Brain Res. Rev. 31, 251–269 10.1016/S0165-0173(99)00041-7
    1. Beste C., Domschke K., Kolev V., Yordanova J., Baffa A., Falkenstein M., et al. (2010). Functional 5-HT1a receptor polymorphism selectively modulates error-specific subprocesses of performance monitoring. Hum. Brain Mapp. 31, 621–630
    1. Beste C., Kolev V., Yordanova J., Domschke K., Falkenstein M., Baune B. T., et al. (2012). The role of the BDNF Val66Met polymorphism for the synchronization of error-specific neural networks. J. Neurosci. 30, 10727–10733 10.1523/JNEUROSCI.2493-10.2010
    1. Beste C., Konrad C., Uhlmann C., Arolt V., Zwanzger P., Domschke K. (2013). Neuropeptide S receptor (NPSR1) gene variation modulates response inhibition and error monitoring. Neuroimage 71, 1–9 10.1016/j.neuroimage.2013.01.004
    1. Biehl S. C., Dresler T., Reif A., Scheuerpflug P., Deckert J., Herrmann M. J. (2011). Dopamine transporter (DAT1) and dopamine receptor D4 (DRD4) genotypes differentially impact on electrophysiological correlates of error processing. PLoS ONE 6:e28396 10.1371/journal.pone.0028396
    1. Bishop S. L., Richler J., Cain A. C., Lord C. (2007). Predictors of perceived negative impact in mothers of children with autism spectrum disorder. Am. J. Ment. Retard. 112, 450–461 10.1352/0895-8017(2007)112[450:POPNII];2
    1. Bogte H., Flamma B., Van Der Meere J., Van Engeland H. (2007). Post-error adaptation in adults with high functioning autism. Neuropsychologia 45, 1707–1714 10.1016/j.neuropsychologia.2006.12.020
    1. Brazdil M., Roman R., Falkenstein M., Daniel P., Jurak P., Rektor I. (2002). Error processing–evidence from intracerebral ERP recordings. Exp. Brain Res. 146, 460–466 10.1007/s00221-002-1201-y
    1. Breiter H. C., Rauch S. L., Kwong K. K., Baker J. R., Weisskoff R. M., Kennedy D. N., et al. (1996). Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Arch. Gen. Psychiatry 53, 595–606 10.1001/archpsyc.1996.01830070041008
    1. Brown J. W., Braver T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science 307, 1118–1121 10.1126/science.1105783
    1. Broyd S. J., Demanuele C., Debener S., Helps S. K., James C. J., Sonuga-Barke E. J. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 33, 279–296 10.1016/j.neubiorev.2008.09.002
    1. Buchsbaum M. S., Tang C. Y., Peled S., Gudbjartsson H., Lu D., Hazlett E. A., et al. (1998). MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. Neuroreport 9, 425–430 10.1097/00001756-199802160-00013
    1. Buckner R. L., Andrews-Hanna J. R., Schacter D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Ann. N.Y. Acad. Sci. 1124, 1–38 10.1196/annals.1440.011
    1. Burns J., Job D., Bastin M. E., Whalley H., Macgillivray T., Johnstone E. C., et al. (2003). Structural disconnectivity in schizophrenia: a diffusion tensor magnetic resonance imaging study. Br. J. Psychiatry 182, 439–443 10.1192/bjp.182.5.439
    1. Burock M. A., Dale A. M. (2000). Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach. Hum. Brain Mapp. 11, 249–260
    1. Bush G., Luu P., Posner M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 10.1016/S1364-6613(00)01483-2
    1. Bush G., Whalen P. J., Rosen B. R., Jenike M. A., McInerney S. C., Rauch S. L. (1998). The counting stroop: an interference task specialized for functional neuroimaging–validation study with functional MRI. Hum. Brain Mapp. 6, 270–282
    1. Canli T., Omura K., Haas B. W., Fallgatter A., Constable R. T., Lesch K. P. (2005). Beyond affect: a role for genetic variation of the serotonin transporter in neural activation during a cognitive attention task. Proc. Natl. Acad. Sci. U.S.A. 102, 12224–12229 10.1073/pnas.0503880102
    1. Carrasco M., Harbin S. M., Nienhuis J. K., Fitzgerald K. D., Gehring W. J., Hanna G. L. (2013). Increased error-related brain activity in youth with obsessive-compulsive disorder and unaffected siblings. Depress. Anxiety 30, 39–46 10.1002/da.22035
    1. Carter C. S., Macdonald A. W., 3rd., Ross L. L., Stenger V. A. (2001). Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. Am. J. Psychiatry 158, 1423–1428 10.1176/appi.ajp.158.9.1423
    1. Chan R. C., Gottesman Ii., Ge X., Sham P. C. (2010). Strategies for the study of neuropsychiatric disorders using endophenotypes in developing countries: a potential databank from china. Front. Hum. Neurosci. 4:207 10.3389/fnhum.2010.00207
    1. Chao H. M., Kao H. T., Porton B. (2008). BDNF Val66Met variant and age of onset in schizophrenia. Am. J. Med. Genet. B Neuropsychiat. Genet. 147B, 505–506 10.1002/ajmg.b.30619
    1. Cheng Y., Chou K. H., Chen I. Y., Fan Y. T., Decety J., Lin C. P. (2010). Atypical development of white matter microstructure in adolescents with autism spectrum disorders. Neuroimage 50, 873–882 10.1016/j.neuroimage.2010.01.011
    1. Cohen-Cory S., Escandon E., Fraser S. E. (1996). The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development. Dev. Biol. 179, 102–115 10.1006/dbio.1996.0244
    1. Craddock N., O'Donovan M. C., Owen M. J. (2006a). Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr. Bull. 32, 9–16 10.1093/schbul/sbj033
    1. Craddock N., Owen M. J., O'Donovan M. C. (2006b). The catechol-O-methyl transferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons. Mol. Psychiatry 11, 446–458 10.1038/sj.mp.4001808
    1. Crespi B., Stead P., Elliot M. (2010). Evolution in health and medicine sackler colloquium: comparative genomics of autism and schizophrenia. Proc. Natl. Acad. Sci. U.S.A. 107Suppl. 1, 1736–1741 10.1073/pnas.0906080106
    1. Cross-Disorder Group of the Psychiatric Genomics, C. Smoller J. W., Craddock N., Kendler K., Lee P. H., Neale B. M., et al. (2013). Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 10.1016/S0140-6736(12)62129-1
    1. Cruz C., Camarena B., King N., Paez F., Sidenberg D., De La Fuente J. R., et al. (1997). Increased prevalence of the seven-repeat variant of the dopamine D4 receptor gene in patients with obsessive-compulsive disorder with tics. Neurosci. Lett. 231, 1–4 10.1016/S0304-3940(97)00523-5
    1. De Bruijn E. R., Hulstijn W., Verkes R. J., Ruigt G. S., Sabbe B. G. (2004). Drug-induced stimulation and suppression of action monitoring in healthy volunteers. Psychopharmacology (Berl.) 177, 151–160 10.1007/s00213-004-1915-6
    1. De Bruijn E. R., Sabbe B. G., Hulstijn W., Ruigt G. S., Verkes R. J. (2006). Effects of antipsychotic and antidepressant drugs on action monitoring in healthy volunteers. Brain Res. 1105, 122–129 10.1016/j.brainres.2006.01.006
    1. Debener S., Ullsperger M., Siegel M., Fiehler K., Von Cramon D. Y., Engel A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J. Neurosci. 25, 11730–11737 10.1523/JNEUROSCI.3286-05.2005
    1. Dehaene S., Posner M. I., Tucker D. M. (1994). Localization of a neural system for error detection and compensation. Psychol. Sci. 5, 303–305 10.1111/j.1467-9280.1994.tb00630.x
    1. Devinsky O., Morrell M. J., Vogt B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain 118(Pt 1), 279–306 10.1093/brain/118.1.279
    1. Domschke K., Reif A., Weber H., Richter J., Hohoff C., Ohrmann P., et al. (2011). Neuropeptide S receptor gene – converging evidence for a role in panic disorder. Mol. Psychiatry 16, 938–948 10.1038/mp.2010.81
    1. Donamayor N., Marco-Pallares J., Heldmann M., Schoenfeld M. A., Munte T. F. (2011). Temporal dynamics of reward processing revealed by magnetoencephalography. Hum. Brain Mapp. 32, 2228–2240 10.1002/hbm.21184
    1. Dougherty D. D., Baer L., Cosgrove G. R., Cassem E. H., Price B. H., Nierenberg A. A., et al. (2002). Prospective long-term follow-up of 44 patients who received cingulotomy for treatment-refractory obsessive-compulsive disorder. Am. J. Psychiatry 159, 269–275 10.1176/appi.ajp.159.2.269
    1. Drevets W. C. (2000). Neuroimaging studies of mood disorders. Biol. Psychiatry 48, 813–829 10.1016/S0006-3223(00)01020-9
    1. Drevets W. C., Raichle M. E. (1998). Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: implications for interactions between emotion and cognition. Cognit. Emot. 12, 353–385 10.1080/026999398379646
    1. Duann J. R., Jung T. P., Kuo W. J., Yeh T. C., Makeig S., Hsieh J. C., et al. (2002). Single-trial variability in event-related BOLD signals. Neuroimage 15, 823–835 10.1006/nimg.2001.1049
    1. Dyckman K. A., Lee A. K. C., Agam Y., Vangel M., Goff D. C., Barton J. J. S., et al. (2011). Abnormally persistent fMRI activation during antisaccades in schizophrenia: a neural correlate of perseveration? Schizophr. Res. 132, 62–68 10.1016/j.schres.2011.07.026
    1. Egan M. F., Goldberg T. E., Kolachana B. S., Callicott J. H., Mazzanti C. M., Straub R. E., et al. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. U.S.A. 98, 6917–6922 10.1073/pnas.111134598
    1. Egan M. F., Kojima M., Callicott J. H., Goldberg T. E., Kolachana B. S., Bertolino A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 10.1016/S0092-8674(03)00035-7
    1. Eichele T., Debener S., Calhoun V. D., Specht K., Engel A. K., Hugdahl K., et al. (2008). Prediction of human errors by maladaptive changes in event-related brain networks. Proc. Natl. Acad. Sci. U.S.A. 105, 6173–6178 10.1073/pnas.0708965105
    1. Endrass T., Franke C., Kathmann N. (2005). Error awareness in a saccade countermanding task. J. Psychophysiol. 19, 275–280 10.1027/0269-8803.19.4.275
    1. Endrass T., Klawohn J., Schuster F., Kathmann N. (2008). Overactive performance monitoring in obsessive-compulsive disorder: ERP evidence from correct and erroneous reactions. Neuropsychologia 46, 1877–1887 10.1016/j.neuropsychologia.2007.12.001
    1. Endrass T., Reuter B., Kathmann N. (2007). ERP correlates of conscious error recognition: aware and unaware errors in an antisaccade task. Eur. J. Neurosci. 26, 1714–1720 10.1111/j.1460-9568.2007.05785.x
    1. Endrass T., Schuermann B., Kaufmann C., Spielberg R., Kniesche R., Kathmann N. (2010). Performance monitoring and error significance in patients with obsessive-compulsive disorder. Biol. Psychol. 84, 257–263 10.1016/j.biopsycho.2010.02.002
    1. Eriksen B. A., Eriksen C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys 16, 143–149 10.3758/BF03203267
    1. Falkenstein M., Hielscher H., Dziobek I., Schwarzenau P., Hoormann J., Sunderman B., et al. (2001). Action monitoring, error detection, and the basal ganglia: an ERP study. Neuroreport 12, 157–161 10.1097/00001756-200101220-00039
    1. Falkenstein M., Hohnsbein J., Hoormann J., Blanke L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr. Clin. Neurophysiol. 78, 447–455 10.1016/0013-4694(91)90062-9
    1. Fallgatter A. J., Herrmann M. J., Roemmler J., Ehlis A. C., Wagener A., Heidrich A., et al. (2004). Allelic variation of serotonin transporter function modulates the brain electrical response for error processing. Neuropsychopharmacology 29, 1506–1511 10.1038/sj.npp.1300409
    1. Fan J. B., Zhang C. S., Gu N. F., Li X. W., Sun W. W., Wang H. Y., et al. (2005). Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol. Psychiatry 57, 139–144 10.1016/j.biopsych.2004.10.018
    1. Fassbender C., Murphy K., Foxe J. J., Wylie G. R., Javitt D. C., Robertson I. H., et al. (2004). A topography of executive functions and their interactions revealed by functional magnetic resonance imaging. Brain Res. Cogn. Brain Res. 20, 132–143 10.1016/j.cogbrainres.2004.02.007
    1. Fiehler K., Ullsperger M., Von Cramon D. Y. (2005). Electrophysiological correlates of error correction. Psychophysiology 42, 72–82 10.1111/j.1469-8986.2005.00265.x
    1. Fitzgerald K. D., Perkins S. C., Angstadt M., Johnson T., Stern E. R., Welsh R. C., et al. (2010). The development of performance-monitoring function in the posterior medial frontal cortex. Neuroimage 49, 3463–3473 10.1016/j.neuroimage.2009.11.004
    1. Fitzgerald K. D., Welsh R. C., Gehring W. J., Abelson J. L., Himle J. A., Liberzon I., et al. (2005). Error-related hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder. Biol. Psychiatry 57, 287–294 10.1016/j.biopsych.2004.10.038
    1. Foong J., Symms M. R., Barker G. J., Maier M., Miller D. H., Ron M. A. (2002). Investigating regional white matter in schizophrenia using diffusion tensor imaging. Neuroreport 13, 333–336 10.1097/00001756-200203040-00017
    1. Fornito A., Yung A. R., Wood S. J., Phillips L. J., Nelson B., Cotton S., et al. (2008). Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals. Biol. Psychiatry 64, 758–765 10.1016/j.biopsych.2008.05.032
    1. Foti D., Kotov R., Bromet E., Hajcak G. (2012). Beyond the broken error-related negativity: functional and diagnostic correlates of error processing in psychosis. Biol. Psychiatry 71, 864–872 10.1016/j.biopsych.2012.01.007
    1. Frank M. J., D'Lauro C., Curran T. (2007). Cross-task individual differences in error processing: neural, electrophysiological, and genetic components. Cogn. Affect. Behav. Neurosci. 7, 297–308 10.3758/CABN.7.4.297
    1. Friso S., Choi S. W., Girelli D., Mason J. B., Dolnikowski G. G., Bagley P. J., et al. (2002). A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc. Natl. Acad. Sci. U.S.A. 99, 5606–5611 10.1073/pnas.062066299
    1. Frosst P., Blom H. J., Milos R., Goyette P., Sheppard C. A., Matthews R. G., et al. (1995). A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 10, 111–113 10.1038/ng0595-111
    1. Fujiwara J., Tobler P. N., Taira M., Iijima T., Tsutsui K. (2009). Segregated and integrated coding of reward and punishment in the cingulate cortex. J. Neurophysiol. 101, 3284–3293 10.1152/jn.90909.2008
    1. Garavan H., Ross T. J., Murphy K., Roche R. A., Stein E. A. (2002). Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. Neuroimage 17, 1820–1829 10.1006/nimg.2002.1326
    1. Gehring W. J., Fencsik D. E. (2001). Functions of the medial frontal cortex in the processing of conflict and errors. J. Neurosci. 21, 9430–9437
    1. Gehring W. J., Goss B., Coles M. G., Meyer D. E., Donchin E. (1993). A neural system for error detection and compensation. Psychol. Sci. 4, 385–390 10.1111/j.1467-9280.1993.tb00586.x
    1. Gehring W. J., Himle J., Nisenson L. G. (2000). Action-monitoring dysfunction in obsessive-compulsive disorder. Psychol. Sci. 11, 1–6 10.1111/1467-9280.00206
    1. Gilbody S., Lewis S., Lightfoot T. (2007). Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am. J. Epidemiol. 165, 1–13 10.1093/aje/kwj347
    1. Goldberg M. C., Spinelli S., Joel S., Pekar J. J., Denckla M. B., Mostofsky S. H. (2011). Children with high functioning autism show increased prefrontal and temporal cortex activity during error monitoring. Dev. Cogn. Neurosci. 1, 47–56 10.1016/j.dcn.2010.07.002
    1. Goldberg T. E., Weinberger D. R., Berman K. F., Pliskin N. H., Podd M. H. (1987). Further evidence for dementia of the prefrontal type in schizophrenia? A controlled study of teaching the Wisconsin Card Sorting Test [see comments]. Arch. Gen. Psychiatry 44, 1008–1014 10.1001/archpsyc.1987.01800230088014
    1. Goldstein J. M., Goodman J. M., Seidman L. J., Kennedy D. N., Makris N., Lee H., et al. (1999). Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging. Arch. Gen. Psychiatry 56, 537–547 10.1001/archpsyc.56.6.537
    1. Gottesman I., Gould T. D. (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 10.1176/appi.ajp.160.4.636
    1. Gould T. D., Gottesman I. I. (2006). Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav. 5, 113–119 10.1111/j.1601-183X.2005.00186.x
    1. Gratacos M., Gonzalez J. R., Mercader J. M., De Cid R., Urretavizcaya M., Estivill X. (2007). Brain-derived neurotrophic factor Val66Met and psychiatric disorders: meta-analysis of case-control studies confirm association to substance-related disorders, eating disorders, and schizophrenia. Biol. Psychiatry 61, 911–922 10.1016/j.biopsych.2006.08.025
    1. Groen Y., Wijers A. A., Mulder L. J., Waggeveld B., Minderaa R. B., Althaus M. (2008). Error and feedback processing in children with ADHD and children with Autistic Spectrum Disorder: an EEG event-related potential study. Clin. Neurophysiol. 119, 2476–2493 10.1016/j.clinph.2008.08.004
    1. Ha T. H., Youn T., Ha K. S., Rho K. S., Lee J. M., Kim I. Y., et al. (2004). Gray matter abnormalities in paranoid schizophrenia and their clinical correlations. Psychiatry Res. 132, 251–260 10.1016/j.pscychresns.2004.05.001
    1. Hajcak G., McDonald N., Simons R. F. (2003). To err is autonomic: error-related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiology 40, 895–903 10.1111/1469-8986.00107
    1. Hajcak G., McDonald N., Simons R. F. (2004). Error-related psychophysiology and negative affect. Brain Cogn. 56, 189–197 10.1016/j.bandc.2003.11.001
    1. Hajcak G., Simons R. F. (2002). Error-related brain activity in obsessive-compulsive undergraduates. Psychiatry Res. 110, 63–72 10.1016/S0165-1781(02)00034-3
    1. Hallett P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Res. 18, 1279–1296 10.1016/0042-6989(78)90218-3
    1. Hao Y., Liu Z., Jiang T., Gong G., Liu H., Tan L., et al. (2006). White matter integrity of the whole brain is disrupted in first-episode schizophrenia. Neuroreport 17, 23–26 10.1097/01.wnr.0000195664.15090.46
    1. Hariri A. R., Drabant E. M., Weinberger D. R. (2006). Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biol. Psychiatry 59, 888–897 10.1016/j.biopsych.2005.11.005
    1. Henderson H., Schwartz C., Mundy P., Burnette C., Sutton S., Zahka N., et al. (2006). Response monitoring, the error-related negativity, and differences in social behavior in autism. Brain Cogn. 61, 96–109 10.1016/j.bandc.2005.12.009
    1. Herrmann M. J., Rommler J., Ehlis A. C., Heidrich A., Fallgatter A. J. (2004). Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe). Brain Res. Cogn. Brain Res. 20, 294–299 10.1016/j.cogbrainres.2004.02.013
    1. Holroyd C. B., Coles M. G. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109, 679–709 10.1037/0033-295X.109.4.679
    1. Holroyd C. B., Dien J., Coles M. G. (1998). Error-related scalp potentials elicited by hand and foot movements: evidence for an output-independent error-processing system in humans. Neurosci. Lett. 242, 65–68 10.1016/S0304-3940(98)00035-4
    1. Holroyd C. B., Larsen J. T., Cohen J. D. (2004a). Context dependence of the event-related brain potential associated with reward and punishment. Psychophysiology 41, 245–253 10.1111/j.1469-8986.2004.00152.x
    1. Holroyd C. B., Nieuwenhuis S., Yeung N., Nystrom L., Mars R. B., Coles M. G., et al. (2004b). Dorsal anterior cingulate cortex shows fMRI response to internal and external error signals. Nat. Neurosci. 7, 497–498 10.1038/nn1238
    1. Holroyd C. B., Nieuwenhuis S., Yeung N., Cohen J. D. (2003). Errors in reward prediction are reflected in the event-related brain potential. Neuroreport 14, 2481–2484 10.1097/00001756-200312190-00037
    1. Huang Y. Y., Battistuzzi C., Oquendo M. A., Harkavy-Friedman J., Greenhill L., Zalsman G., et al. (2004). Human 5-HT1A receptor C(-1019)G polymorphism and psychopathology. Int. J. Neuropsychopharmacol. 7, 441–451 10.1017/S1461145704004663
    1. Ikeda M., Yamanouchi Y., Kinoshita Y., Kitajima T., Yoshimura R., Hashimoto S., et al. (2008). Variants of dopamine and serotonin candidate genes as predictors of response to risperidone treatment in first-episode schizophrenia. Pharmacogenomics 9, 1437–1443 10.2217/14622416.9.10.1437
    1. Imamura K., Takeshima T., Nakaso K., Nakashima K. (2007). Homocysteine is toxic for dopaminergic neurons in primary mesencephalic culture. Neuroreport 18, 1319–1322 10.1097/WNR.0b013e3282aaa0b4
    1. Ito J., Kitagawa J. (2006). Performance monitoring and error processing during a lexical decision task in patients with Parkinson's disease. J. Geriatr. Psychiatry Neurol. 19, 46–54 10.1177/0891988705284716
    1. Jaber M., Jones S., Giros B., Caron M. G. (1997). The dopamine transporter: a crucial component regulating dopamine transmission. Mov. Disord. 12, 629–633 10.1002/mds.870120502
    1. Jacobson S., Kelleher I., Harley M., Murtagh A., Clarke M., Blanchard M., et al. (2010). Structural and functional brain correlates of subclinical psychotic symptoms in 11–13 year old schoolchildren. Neuroimage 49, 1875–1885 10.1016/j.neuroimage.2009.09.015
    1. Jansma J. M., De Zwart J. A., Van Gelderen P., Duyn J. H., Drevets W. C., Furey M. L. (2013). In vivo evaluation of the effect of stimulus distribution on FIR statistical efficiency in event-related fMRI. J. Neurosci. Methods 215, 190–195 10.1016/j.jneumeth.2013.02.017
    1. Johannes S., Wieringa B. M., Nager W., Rada D., Dengler R., Emrich H. M., et al. (2001). Discrepant target detection and action monitoring in obsessive-compulsive disorder. Psychiatry Res. 108, 101–110 10.1016/S0925-4927(01)00117-2
    1. Jonsson E. G., Nothen M. M., Grunhage F., Farde L., Nakashima Y., Propping P., et al. (1999). Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol. Psychiatry 4, 290–296 10.1038/sj.mp.4000532
    1. Kaczkurkin A. N. (2013). The effect of manipulating task difficulty on error-related negativity in individuals with obsessive-compulsive symptoms. Biol. Psychol. 93, 122–131 10.1016/j.biopsycho.2013.01.001
    1. Kanazawa T., Glatt S. J., Kia-Keating B., Yoneda H., Tsuang M. T. (2007). Meta-analysis reveals no association of the Val66Met polymorphism of brain-derived neurotrophic factor with either schizophrenia or bipolar disorder. Psychiatr. Genet. 17, 165–170 10.1097/YPG.0b013e32801da2e2
    1. Keil J., Weisz N., Paul-Jordanov I., Wienbruch C. (2010). Localization of the magnetic equivalent of the ERN and induced oscillatory brain activity. Neuroimage 51, 404–411 10.1016/j.neuroimage.2010.02.003
    1. Kerns J. G., Cohen J. D., Macdonald A. W., 3rd., Cho R. Y., Stenger V. A., Carter C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 10.1126/science.1089910
    1. Kerns J. G., Cohen J. D., Macdonald A. W., 3rd., Johnson M. K., Stenger V. A., Aizenstein H., et al. (2005). Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. Am. J. Psychiatry 162, 1833–1839 10.1176/appi.ajp.162.10.1833
    1. Kim M. S., Kang S. S., Shin K. S., Yoo S. Y., Kim Y. Y., Kwon J. S. (2006). Neuropsychological correlates of error negativity and positivity in schizophrenia patients. Psychiatry Clin. Neurosci. 60, 303–311 10.1111/j.1440-1819.2006.01506.x
    1. Kishi T., Okochi T., Tsunoka T., Okumura T., Kitajima T., Kawashima K., et al. (2011). Serotonin 1A receptor gene, schizophrenia and bipolar disorder: an association study and meta-analysis. Psychiatry Res. 185, 20–26 10.1016/j.psychres.2010.06.003
    1. Klein T. A., Endrass T., Kathmann N., Neumann J., Von Cramon D. Y., Ullsperger M. (2007a). Neural correlates of error awareness. Neuroimage 34, 1774–1781 10.1016/j.neuroimage.2006.11.014
    1. Klein T. A., Neumann J., Reuter M., Hennig J., Von Cramon D. Y., Ullsperger M. (2007b). Genetically determined differences in learning from errors. Science 318, 1642–1645 10.1126/science.1145044
    1. Klunk W. E. (2011). Amyloid imaging as a biomarker for cerebral beta-amyloidosis and risk prediction for Alzheimer dementia. Neurobiol. Aging 32Suppl. 1, S20–S36 10.1016/j.neurobiolaging.2011.09.006
    1. Kopp B., Rist F. (1994). Error-correcting behavior in schizophrenic patients. Schizophr. Res. 13, 11–22 10.1016/0920-9964(94)90056-6
    1. Kopp B., Rist F. (1999). An event-related brain potential substrate of disturbed response monitoring in paranoid schizophrenic patients. J. Abnorm. Psychol. 108, 337–346 10.1037/0021-843X.108.2.337
    1. Kramer U. M., Cunillera T., Camara E., Marco-Pallares J., Cucurell D., Nager W., et al. (2007). The impact of catechol-O-methyltransferase and dopamine D4 receptor genotypes on neurophysiological markers of performance monitoring. J. Neurosci. 27, 14190–14198 10.1523/JNEUROSCI.4229-07.2007
    1. Kubicki M., Westin C. F., Nestor P. G., Wible C. G., Frumin M., Maier S. E., et al. (2003). Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study. Biol. Psychiatry 54, 1171–1180 10.1016/S0006-3223(03)00419-0
    1. Kuperberg G. R., Broome M. R., McGuire P. K., David A. S., Eddy M., Ozawa F., et al. (2003). Regionally localized thinning of the cerebral cortex in schizophrenia. Arch. Gen. Psychiatry 60, 878–888 10.1001/archpsyc.60.9.878
    1. Kwon J. S., Kim E., Kang D. H., Choi J. S., Yu K. S., Jang I. J., et al. (2008). Taq1A polymorphism in the dopamine D2 receptor gene as a predictor of clinical response to aripiprazole. Eur. Neuropsychopharmacol. 18, 897–907 10.1016/j.euroneuro.2008.07.010
    1. Kyriakopoulos M., Dima D., Roiser J. P., Corrigall R., Barker G. J., Frangou S. (2012). Abnormal functional activation and connectivity in the working memory network in early-onset schizophrenia. J. Am. Acad. Child. Adolesc. Psychiatry 51, 911–920 e912. 10.1016/j.jaac.2012.06.020
    1. Ladouceur C. D., Dahl R. E., Carter C. S. (2007). Development of action monitoring through adolescence into adulthood: ERP and source localization. Dev. Sci. 10, 874–891 10.1111/j.1467-7687.2007.00639.x
    1. Laurens K. R., Hodgins S., Mould G. L., West S. A., Schoenberg P. L., Murray R. M., et al. (2010). Error-related processing dysfunction in children aged 9 to 12 years presenting putative antecedents of schizophrenia. Biol. Psychiatry 67, 238–245 10.1016/j.biopsych.2009.07.030
    1. Laurens K. R., Ngan E. T., Bates A. T., Kiehl K. A., Liddle P. F. (2003). Rostral anterior cingulate cortex dysfunction during error processing in schizophrenia. Brain 126, 610–622 10.1093/brain/awg056
    1. Lemonde S., Turecki G., Bakish D., Du L., Hrdina P. D., Bown C. D., et al. (2003). Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J. Neurosci. 23, 8788–8799
    1. Levy D. L., Mendell N. R., Lavancher C. A., Brownstein J., Krastoshevsky O., Teraspulsky L., et al. (1998). Disinhibition in antisaccade performance in schizophrenia, in Origins and Development of Schizophrenia, eds Lenzenweger M. F., Dworkin R. H. (Washington, DC: American Psychological Association; ), 185–210 10.1037/10305-007
    1. Li C. S., Yan P., Bergquist K. L., Sinha R. (2007). Greater activation of the “default” brain regions predicts stop signal errors. Neuroimage 38, 640–648 10.1016/j.neuroimage.2007.07.021
    1. Liu Y., Gehring W. J., Weissman D. H., Taylor S. F., Fitzgerald K. D. (2012). Trial-by-trial adjustments of cognitive control following errors and response conflict are altered in pediatric obsessive compulsive disorder. Front. Psychiatry 3:41 10.3389/fpsyt.2012.00041
    1. Logan G. D., Cowan W. B. (1984). On the ability to inhibit thought and action: a theory of an act of control. Psychol. Rev. 91, 295–327 10.1037/0033-295X.91.3.295
    1. Luo X., Zhang S., Hu S., Bednarski S. R., Erdman E., Farr O. M., et al. (2013). Error processing and gender-shared and -specific neural predictors of relapse in cocaine dependence. Brain 136, 1231–1244 10.1093/brain/awt040
    1. Lutz U. C. (2008). Alterations in homocysteine metabolism among alcohol dependent patients–clinical, pathobiochemical and genetic aspects. Curr. Drug Abuse. Rev. 1, 47–55 10.2174/1874473710801010047
    1. Lutz U. C., Batra A., Kolb W., Machicao F., Maurer S., Kohnke M. D. (2006). Methylenetetrahydrofolate reductase C677T-polymorphism and its association with alcohol withdrawal seizure. Alcohol. Clin. Exp. Res. 30, 1966–1971 10.1111/j.1530-0277.2006.00242.x
    1. Lutz U. C., Batra A., Wiatr G., Machicao F., Kolb W., Maurer S., et al. (2007). Significant impact of MTHFR C677T polymorphism on plasma homovanillic acid (HVA) levels among alcohol-dependent patients. Addict. Biol. 12, 100–105 10.1111/j.1369-1600.2006.00046.x
    1. Luu P., Tucker D. M., Derryberry D., Reed M., Poulsen C. (2003). Electrophysiological responses to errors and feedback in the process of action regulation. Psychol. Sci. 14, 47–53 10.1111/1467-9280.01417
    1. Malenka R. C., Angel R. W., Hampton B., Berger P. A. (1982). Impaired central error-correcting behavior in schizophrenia. Arch. Gen. Psychiatry 39, 101–107 10.1001/archpsyc.1982.04290010073013
    1. Malenka R. C., Angel R. W., Thiemann S., Weitz C. J., Berger P. A. (1986). Central error-correcting behavior in schizophrenia and depression. Biol. Psychiatry 21, 263–273 10.1016/0006-3223(86)90047-8
    1. Maltby N., Tolin D. F., Worhunsky P., O'Keefe T. M., Kiehl K. A. (2005). Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive-compulsive disorder: an event-related fMRI study. Neuroimage 24, 495–503 10.1016/j.neuroimage.2004.08.041
    1. Manoach D. S., Greve D. N., Lindgren K. A., Dale A. M. (2003). Identifying regional activity associated with temporally separated components of working memory using event-related functional MRI. Neuroimage 20, 1670–1684 10.1016/j.neuroimage.2003.08.002
    1. Manoach D. S., Ketwaroo G. A., Polli F. E., Thakkar K. N., Barton J. J., Goff D. C., et al. (2007). Reduced microstructural integrity of the white matter underlying anterior cingulate cortex is associated with increased saccadic latency in schizophrenia. Neuroimage 37, 599–610 10.1016/j.neuroimage.2007.04.062
    1. Mathalon D. H., Fedor M., Faustman W. O., Gray M., Askari N., Ford J. M. (2002). Response-monitoring dysfunction in schizophrenia: an event-related brain potential study. J. Abnorm. Psychol. 111, 22–41 10.1037/0021-843X.111.1.22
    1. Mathews C. A., Perez V. B., Delucchi K. L., Mathalon D. H. (2012). Error-related negativity in individuals with obsessive-compulsive symptoms: toward an understanding of hoarding behaviors. Biol. Psychol. 89, 487–494 10.1016/j.biopsycho.2011.12.018
    1. McCoy A. N., Crowley J. C., Haghighian G., Dean H. L., Platt M. L. (2003). Saccade reward signals in posterior cingulate cortex. Neuron 40, 1031–1040 10.1016/S0896-6273(03)00719-0
    1. McDonald C., Bullmore E., Sham P., Chitnis X., Suckling J., Maccabe J., et al. (2005). Regional volume deviations of brain structure in schizophrenia and psychotic bipolar disorder: computational morphometry study. Br. J. Psychiatry 186, 369–377 10.1192/bjp.186.5.369
    1. Menon V., Adleman N. E., White C. D., Glover G. H., Reiss A. L. (2001). Error-related brain activation during a Go/NoGo response inhibition task. Hum. Brain Mapp. 12, 131–143
    1. Meyer A., Klein D. N., Torpey D. C., Kujawa A. J., Hayden E. P., Sheikh H. I., et al. (2012). Additive effects of the dopamine D2 receptor and dopamine transporter genes on the error-related negativity in young children. Genes Brain Behav. 11, 695–703 10.1111/j.1601-183X.2012.00812.x
    1. Meyer-Lindenberg A., Kohn P. D., Kolachana B., Kippenhan S., McInerney-Leo A., Nussbaum R., et al. (2005). Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat. Neurosci. 8, 594–596 10.1038/nn1438
    1. Mitelman S. A., Shihabuddin L., Brickman A. M., Hazlett E. A., Buchsbaum M. S. (2005). Volume of the cingulate and outcome in schizophrenia. Schizophr. Res. 72, 91–108 10.1016/j.schres.2004.02.011
    1. Morgan L., Wetherby A. M., Barber A. (2008). Repetitive and stereotyped movements in children with autism spectrum disorders late in the second year of life. J. Child Psychol. Psychiatry 49, 826–837 10.1111/j.1469-7610.2008.01904.x
    1. Morris S. E., Yee C. M., Nuechterlein K. H. (2006). Electrophysiological analysis of error monitoring in schizophrenia. J. Abnorm. Psychol. 115, 239–250 10.1037/0021-843X.115.2.239
    1. Mossner R., Schuhmacher A., Kuhn K. U., Cvetanovska G., Rujescu D., Zill P., et al. (2009). Functional serotonin 1A receptor variant influences treatment response to atypical antipsychotics in schizophrenia. Pharmacogenet. Genom. 19, 91–94 10.1097/FPC.0b013e328311a917
    1. Munafo M. R., Bowes L., Clark T. G., Flint J. (2005). Lack of association of the COMT (Val158/108 Met) gene and schizophrenia: a meta-analysis of case-control studies. Mol. Psychiatry 10, 765–770 10.1038/sj.mp.4001664
    1. Nieuwenhuis S., Nielen M. M., Mol N., Hajcak G., Veltman D. J. (2005). Performance monitoring in obsessive-compulsive disorder. Psychiatry Res. 134, 111–122 10.1016/j.psychres.2005.02.005
    1. Nieuwenhuis S., Ridderinkhof K. R., Blom J., Band G. P., Kok A. (2001). Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology 38, 752–760 10.1111/1469-8986.3850752
    1. Nieuwenhuis S., Yeung N., Van Den Wildenberg W., Ridderinkhof K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn. Affect. Behav. Neurosci. 3, 17–26 10.3758/CABN.3.1.17
    1. Noriuchi M., Kikuchi Y., Yoshiura T., Kira R., Shigeto H., Hara T., et al. (2010). Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder. Brain Res. 1362, 141–149 10.1016/j.brainres.2010.09.051
    1. Ohnuma T., Kimura M., Takahashi T., Iwamoto N., Arai H. (1997). A magnetic resonance imaging study in first-episode disorganized-type patients with schizophrenia. Psychiatry Clin. Neurosci. 51, 9–15 10.1111/j.1440-1819.1997.tb02359.x
    1. Okamura N., Reinscheid R. K. (2007). Neuropeptide S: a novel modulator of stress and arousal. Stress 10, 221–226 10.1080/10253890701248673
    1. Okochi T., Ikeda M., Kishi T., Kawashima K., Kinoshita Y., Kitajima T., et al. (2009). Meta-analysis of association between genetic variants in COMT and schizophrenia: an update. Schizophr. Res. 110, 140–148 10.1016/j.schres.2009.02.019
    1. Okuyama Y., Ishiguro H., Toru M., Arinami T. (1999). A genetic polymorphism in the promoter region of DRD4 associated with expression and schizophrenia. Biochem. Biophys. Res. Commun. 258, 292–295 10.1006/bbrc.1999.0630
    1. Olvet D. M., Hajcak G. (2008). The error-related negativity (ERN) and psychopathology: toward an endophenotype. Clin. Psychol. Rev. 28, 1343–1354 10.1016/j.cpr.2008.07.003
    1. Olvet D. M., Hatchwell E., Hajcak G. (2010). Lack of association between the 5-HTTLPR and the error-related negativity (ERN). Biol. Psychol. 85, 504–508 10.1016/j.biopsycho.2010.09.012
    1. Osinsky R., Hewig J., Alexander N., Hennig J. (2012). COMT Val158Met genotype and the common basis of error and conflict monitoring. Brain Res. 1452, 108–118 10.1016/j.brainres.2012.02.054
    1. Overbeek T. J. M., Nieuwenhuis S., Ridderinkhof K. R. (2005). Dissociable components of error processing. J. Psychophysiol. 19, 319–329 10.1027/0269-8803.19.4.319
    1. Parsons M. J., Mata I., Beperet M., Iribarren-Iriso F., Arroyo B., Sainz R., et al. (2007). A dopamine D2 receptor gene-related polymorphism is associated with schizophrenia in a Spanish population isolate. Psychiatr. Genet. 17, 159–163 10.1097/YPG.0b013e328017f8a4
    1. Paus T., Petrides M., Evans A. C., Meyer E. (1993). Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J. Neurophysiol. 70, 453–469
    1. Perez V. B., Ford J. M., Roach B. J., Woods S. W., McGlashan T. H., Srihari V. H., et al. (2012). Error monitoring dysfunction across the illness course of schizophrenia. J. Abnorm. Psychol. 121, 372–387 10.1037/a0025487
    1. Pezawas L., Meyer-Lindenberg A., Drabant E. M., Verchinski B. A., Munoz K. E., Kolachana B. S., et al. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat. Neurosci. 8, 828–834 10.1038/nn1463
    1. Phillips M. L., Drevets W. C., Rauch S. L., Lane R. (2003). Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol. Psychiatry 54, 504–514 10.1016/S0006-3223(03)00168-9
    1. Pitman R. K. (1987). A cybernetic model of obsessive-compulsive psychopathology. Comp. Psychiatry 28, 334–343 10.1016/0010-440X(87)90070-8
    1. Pohjalainen T., Rinne J. O., Nagren K., Lehikoinen P., Anttila K., Syvalahti E. K., et al. (1998). The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol. Psychiatry 3, 256–260 10.1038/sj.mp.4000350
    1. Polli F. E., Barton J. J., Cain M. S., Thakkar K. N., Rauch S. L., Manoach D. S. (2005). Rostral and dorsal anterior cingulate cortex make dissociable contributions during antisaccade error commission. Proc. Natl. Acad. Sci. U.S.A. 102, 15700–15705 10.1073/pnas.0503657102
    1. Polli F. E., Barton J. J., Thakkar K. N., Greve D. N., Goff D. C., Rauch S. L., et al. (2008). Reduced error-related activation in two anterior cingulate circuits is related to impaired performance in schizophrenia. Brain 131, 971–986 10.1093/brain/awm307
    1. Polli F. E., Barton J. J., Vangel M., Goff D. C., Iguchi L., Manoach D. S. (2006). Schizophrenia patients show intact immediate error-related performance adjustments on an antisaccade task. Schizophr. Res. 82, 191–201 10.1016/j.schres.2005.10.003
    1. Polli F. E., Wright C. I., Milad M. R., Dickerson B. C., Vangel M., Barton J. J. S., et al. (2009). Hemispheric differences in amygdala contributions to response monitoring. Neuroreport 20, 398–402 10.1097/WNR.0b013e328324edb8
    1. Purcell S. M., Wray N. R., Stone J. L., Visscher P. M., O'Donovan M. C., Sullivan P. F., et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752
    1. Rabbitt P. M. (1966). Errors and error correction in choice-response tasks. J. Exp. Psychol. 71, 264–272 10.1037/h0022853
    1. Radant A. D., Dobie D. J., Calkins M. E., Olincy A., Braff D. L., Cadenhead K. S., et al. (2010). Antisaccade performance in schizophrenia patients, their first-degree biological relatives, and community comparison subjects: data from the COGS study. Psychophysiology 47, 846–856
    1. Raichle M. E., Macleod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 676–682 10.1073/pnas.98.2.676
    1. Reinscheid R. K., Xu Y. L., Okamura N., Zeng J., Chung S., Pai R., et al. (2005). Pharmacological characterization of human and murine neuropeptide s receptor variants. J. Pharmacol. Exp. Therapeut. 315, 1338–1345 10.1124/jpet.105.093427
    1. Reynolds G. P., Arranz B., Templeman L. A., Fertuzinhos S., San L. (2006). Effect of 5-HT1A receptor gene polymorphism on negative and depressive symptom response to antipsychotic treatment of drug-naive psychotic patients. Am. J. Psychiatry 163, 1826–1829 10.1176/appi.ajp.163.10.1826
    1. Ridderinkhof K. R., Nieuwenhuis S., Bashore T. R. (2003). Errors are foreshadowed in brain potentials associated with action monitoring in cingulate cortex in humans. Neurosci. Lett. 348, 1–4 10.1016/S0304-3940(03)00566-4
    1. Ridderinkhof K. R., Ullsperger M., Crone E. A., Nieuwenhuis S. (2004). The role of the medial frontal cortex in cognitive control. Science 306, 443–447 10.1126/science.1100301
    1. Ritchie T., Noble E. P. (2003). Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem. Res. 28, 73–82 10.1023/A:1021648128758
    1. Roffman J. L., Brohawn D. G., Friedman J., Dyckman K. A., Thakkar K. N., Agam Y., et al. (2011a). MTHFR 677C>T effects on anterior cingulate structure and function during response monitoring in schizophrenia: a preliminary study. Brain Imaging Behav. 5, 65–75 10.1007/s11682-010-9111-2
    1. Roffman J. L., Nitenson A. Z., Agam Y., Isom M., Friedman J. S., Dyckman K. A., et al. (2011b). A hypomethylating variant of MTHFR, 677C>T, blunts the neural response to errors in patients with schizophrenia and healthy individuals. PLoS ONE 6:e25253 10.1371/journal.pone.0025253
    1. Roffman J. L., Gollub R. L., Calhoun V. D., Wassink T. H., Weiss A. P., Ho B. C., et al. (2008a). MTHFR 677C⇒ T genotype disrupts prefrontal function in schizophrenia through an interaction with COMT 158Val⇒ Met. Proc. Natl. Acad. Sci. U.S.A. 105, 17573–17578 10.1073/pnas.0803727105
    1. Roffman J. L., Weiss A. P., Deckersbach T., Freudenreich O., Henderson D. C., Wong D. H., et al. (2008b). Interactive effects of COMT Val108/158Met and MTHFR C677T on executive function in schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 990–995 10.1002/ajmg.b.30684
    1. Roffman J. L., Weiss A. P., Purcell S., Caffalette C. A., Freudenreich O., Henderson D. C., et al. (2008c). Contribution of methylenetetrahydrofolate reductase (MTHFR) polymorphisms to negative symptoms in schizophrenia. Biol. Psychiatry 63, 42–48 10.1016/j.biopsych.2006.12.017
    1. Ruchsow M., Spitzer M., Gron G., Grothe J., Kiefer M. (2005). Error processing and impulsiveness in normals: evidence from event-related potentials. Brain Res. Cogn. Brain Res. 24, 317–325 10.1016/j.cogbrainres.2005.02.003
    1. Russell J., Jarrold C. (1998). Error-correction problems in autism: evidence for a monitoring impairment? J. Autism Dev. Disord. 28, 177–188 10.1023/A:1026009203333
    1. Sandrone S. (2012). The brain as a crystal ball: the predictive potential of default mode network. Front. Hum. Neurosci. 6:261 10.3389/fnhum.2012.00261
    1. Santesso D. L., Drmic I. E., Jetha M. K., Bryson S. E., Goldberg J. O., Hall G. B., et al. (2011). An event-related source localization study of response monitoring and social impairments in autism spectrum disorder. Psychophysiology 241–251 10.1111/j.1469-8986.2010.01056.x
    1. Santesso D. L., Segalowitz S. J., Schmidt L. A. (2006). Error-related electrocortical responses are enhanced in children with obsessive-compulsive behaviors. Dev. Neuropsychol. 29, 431–445 10.1207/s15326942dn2903_3
    1. Scheffers M. K., Coles M. G. (2000). Performance monitoring in a confusing world: error-related brain activity, judgments of response accuracy, and types of errors. J. Exp. Psychol. Hum. Percept. Perform. 26, 141–151 10.1037/0096-1523.26.1.141
    1. Schmahmann J. D., Pandya D. N., Wang R., Dai G., D'Arceuil H. E., De Crespigny A. J., et al. (2007). Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130, 630–653 10.1093/brain/awl359
    1. Schultz W. (2002). Getting formal with dopamine and reward. Neuron 36, 241–263 10.1016/S0896-6273(02)00967-4
    1. Schultz W., Dayan P., Montague P. R. (1997). A neural substrate of prediction and reward. Science 275, 1593–1598 10.1126/science.275.5306.1593
    1. Shi J., Gershon E. S., Liu C. (2008). Genetic associations with schizophrenia: meta-analyses of 12 candidate genes. Schizophr. Res. 104, 96–107 10.1016/j.schres.2008.06.016
    1. Sigmundsson T., Suckling J., Maier M., Williams S., Bullmore E., Greenwood K., et al. (2001). Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am. J. Psychiatry 158, 234–243 10.1176/appi.ajp.158.2.234
    1. Simmonite M., Bates A. T., Groom M. J., Jackson G. M., Hollis C., Liddle P. F. (2012). Error processing-associated event-related potentials in schizophrenia and unaffected siblings. Int. J. Psychophysiol. 84, 74–79 10.1016/j.ijpsycho.2012.01.012
    1. Simon J. R. (1969). Reactions towards the source of stimulation. J. Exp. Psychol. 81, 174–176 10.1037/h0027448
    1. Smith B. W., Mitchell D. G., Hardin M. G., Jazbec S., Fridberg D., Blair R. J., et al. (2009). Neural substrates of reward magnitude, probability, and risk during a wheel of fortune decision-making task. Neuroimage 44, 600–609 10.1016/j.neuroimage.2008.08.016
    1. Sokhadze E., Baruth J., El-Baz A., Horrell T., Sokhadze G., Carroll T., et al. (2010). Impaired error monitoring and correction function in autism. J. Neurother. 14, 79–95 10.1080/10874201003771561
    1. Sokhadze E. M., Baruth J. M., Sears L., Sokhadze G. E., El-Baz A. S., Casanova M. F. (2012a). Prefrontal neuromodulation using rTMS improves error monitoring and correction function in autism. Appl. Psychophysiol. Biofeed. 37, 91–102 10.1007/s10484-012-9182-5
    1. Sokhadze E. M., Baruth J. M., Sears L., Sokhadze G. E., El-Baz A. S., Williams E., et al. (2012b). event-related potential study of attention regulation during illusory figure categorization task in adhd, autism spectrum disorder, and typical children. J. Neurother. 16, 12–31 10.1080/10874208.2012.650119
    1. South M., Larson M. J., Krauskopf E., Clawson A. (2010). Error processing in high-functioning Autism Spectrum Disorders. Biol. Psychol. 85, 242–251 10.1016/j.biopsycho.2010.07.009
    1. Stroop J. R. (1935). Studies of interference in serial verbal reaction. J. Exp. Psychol. 18, 643–662 10.1037/h0054651
    1. Summerfelt A. T., Alphs L. D., Wagman A. M., Funderburk F. R., Hierholzer R. M., Strauss M. E. (1991). Reduction of perseverative errors in patients with schizophrenia using monetary feedback. J. Abnorm. Psychol. 100, 613–616 10.1037/0021-843X.100.4.613
    1. Sun Z., Wang F., Cui L., Breeze J., Du X., Wang X., et al. (2003). Abnormal anterior cingulum in patients with schizophrenia: a diffusion tensor imaging study. Neuroreport 14, 1833–1836 10.1097/00001756-200310060-00015
    1. Suzuki M., Nohara S., Hagino H., Kurokawa K., Yotsutsuji T., Kawasaki Y., et al. (2002). Regional changes in brain gray and white matter in patients with schizophrenia demonstrated with voxel-based analysis of MRI. Schizophr. Res. 55, 41–54 10.1016/S0920-9964(01)00224-9
    1. Taj M. J. R., Viswanath B., Purushottam M., Kandavel T., Janardhan Reddy Y. C., Jain S. (2013). DRD4 gene and obsessive compulsive disorder: do symptom dimensions have specific genetic correlates? Prog. Neuropsychopharmacol. Biol. Psychiatry 41, 18–23 10.1016/j.pnpbp.2012.10.023
    1. Tan H. Y., Callicott J. H., Weinberger D. R. (2008). Intermediate phenotypes in schizophrenia genetics redux: is it a no brainer? Mol. Psychiatry 13, 233–238 10.1038/sj.mp.4002145
    1. Taylor S. F., Martis B., Fitzgerald K. D., Welsh R. C., Abelson J. L., Liberzon I., et al. (2006). Medial frontal cortex activity and loss-related responses to errors. J. Neurosci. 26, 4063–4070 10.1523/JNEUROSCI.4709-05.2006
    1. Taylor S. F., Stern E. R., Gehring W. J. (2007). Neural systems for error monitoring: recent findings and theoretical perspectives. Neuroscientist 13, 160–172 10.1177/1073858406298184
    1. Thakkar K. N., Polli F. E., Joseph R. M., Tuch D. S., Hadjikhani N., Barton J. J., et al. (2008). Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD). Brain 131, 2464–2478 10.1093/brain/awn099
    1. Thorndike E. (1911). Animal Intelligence. New York, NY: Macmillan
    1. Tu P., Buckner R. L., Zollei L., Dyckman K. A., Manoach D. S. (2010). Reduced functional connectivity in a right-hemisphere network for volitional ocular motor control in schizophrenia. Brain 133, 625–637 10.1093/brain/awp317
    1. Turetsky B. I., Greenwood T. A., Olincy A., Radant A. D., Braff D. L., Cadenhead K. S., et al. (2008). Abnormal auditory N100 amplitude: a heritable endophenotype in first-degree relatives of schizophrenia probands. Biol. Psychiatry 64, 1051–1059 10.1016/j.biopsych.2008.06.018
    1. Turken A. U., Vuilleumier P., Mathalon D. H., Swick D., Ford J. M. (2003). Are impairments of action monitoring and executive control true dissociative dysfunctions in patients with schizophrenia? Am. J. Psychiatry 160, 1881–1883 10.1176/appi.ajp.160.10.1881
    1. Ursu S., Stenger V. A., Shear M. K., Jones M. R., Carter C. S. (2003). Overactive action monitoring in obsessive-compulsive disorder: evidence from functional magnetic resonance imaging. Psychol. Sci. 14, 347–353 10.1111/1467-9280.24411
    1. Van Boxtel G. J. M., Van Der Molen M. W., Jennings J. R. (2005). Differential involvement of the anterior cingulate cortex in performance monitoring during a stop-signal task. J. Psychophysiol. 19, 1–10 10.1027/0269-8803.19.1.1
    1. Van De Giessen E., De Win M. M., Tanck M. W., Van Den Brink W., Baas F., Booij J. (2009). Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. J. Nuclear Med. 50, 45–52
    1. Vandenbergh D. J., Persico A. M., Hawkins A. L., Griffin C. A., Li X., Jabs E. W., et al. (1992). Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14, 1104–1106 10.1016/S0888-7543(05)80138-7
    1. Van Dyck C. H., Malison R. T., Jacobsen L. K., Seibyl J. P., Staley J. K., Laruelle M., et al. (2005). Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J. Nuclear Med. 46, 745–751
    1. Van Hoesen G. W., Morecraft R. J., Vogt B. A. (1993). Connections of the monkey cingulate cortex, in Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook, eds Vogt B. A., Gabriel M. (Boston, MA: Birkhauser; ), 249–284
    1. Van Schie H. T., Mars R. B., Coles M. G., Bekkering H. (2004). Modulation of activity in medial frontal and motor cortices during error observation. Nat. Neurosci. 7, 549–554 10.1038/nn1239
    1. Van Tol H. H., Wu C. M., Guan H. C., Ohara K., Bunzow J. R., Civelli O., et al. (1992). Multiple dopamine D4 receptor variants in the human population. Nature 358, 149–152 10.1038/358149a0
    1. Van Veen V., Carter C. S. (2002). The timing of action-monitoring processes in the anterior cingulate cortex. J. Cogn. Neurosci. 14, 593–602 10.1162/08989290260045837
    1. Van 'T Ent D., Apkarian P. (1999). Motoric response inhibition in finger movement and saccadic eye movement: a comparative study. Clin. Neurophysiol. 110, 1058–1072. 10.1016/S1388-2457(98)00036-4
    1. Vlamings P. H., Jonkman L. M., Hoeksma M. R., Van Engeland H., Kemner C. (2008). Reduced error monitoring in children with autism spectrum disorder: an ERP study. Eur. J. Neurosci. 28, 399–406 10.1111/j.1460-9568.2008.06336.x
    1. Waltz J. A., Frank M. J., Robinson B. M., Gold J. M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biol. Psychiatry 62, 756–764 10.1016/j.biopsych.2006.09.042
    1. Waltz J. A., Gold J. M. (2007). Probabilistic reversal learning impairments in schizophrenia: further evidence of orbitofrontal dysfunction. Schizophr. Res. 93, 296–303 10.1016/j.schres.2007.03.010
    1. Waltz J. A., Schweitzer J. B., Ross T. J., Kurup P. K., Salmeron B. J., Rose E. J., et al. (2010). Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology 35, 2427–2439 10.1038/npp.2010.126
    1. Wang F., Sun Z., Cui L., Du X., Wang X., Zhang H., et al. (2004). Anterior cingulum abnormalities in male patients with schizophrenia determined through diffusion tensor imaging. Am. J. Psychiatry 161, 573–575 10.1176/appi.ajp.161.3.573
    1. Watt N., Wetherby A. M., Barber A., Morgan L. (2008). Repetitive and stereotyped behaviors in children with autism spectrum disorders in the second year of life. J. Autism. Dev. Disord. 38, 1518–1533 10.1007/s10803-007-0532-8
    1. Whalen P. J., Bush G., McNally R. J., Wilhelm S., McInerney S. C., Jenike M. A., et al. (1998). The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division. Biol. Psychiatry 44, 1219–1228 10.1016/S0006-3223(98)00251-0
    1. Whalley H. C., Simonotto E., Moorhead W., McIntosh A., Marshall I., Ebmeier K. P., et al. (2006). Functional imaging as a predictor of schizophrenia. Biol. Psychiatry 60, 454–462 10.1016/j.biopsych.2005.11.013
    1. Whitfield-Gabrieli S., Ford J. M. (2012). Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 8, 49–76 10.1146/annurev-clinpsy-032511-143049
    1. Willemssen R., Muller T., Schwarz M., Falkenstein M., Beste C. (2009). Response monitoring in de novo patients with Parkinson's disease. PLoS ONE 4:e4898 10.1371/journal.pone.0004898
    1. Wittfoth M., Kustermann E., Fahle M., Herrmann M. (2008). The influence of response conflict on error processing: evidence from event-related fMRI. Brain Res. 1194, 118–129 10.1016/j.brainres.2007.11.067
    1. Xiao Z., Wang J., Zhang M., Li H., Tang Y., Wang Y., et al. (2011). Error-related negativity abnormalities in generalized anxiety disorder and obsessive-compulsive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 265–272 10.1016/j.pnpbp.2010.11.022
    1. Xing Q. H., Wu S. N., Lin Z. G., Li H. F., Yang J. D., Feng G. Y., et al. (2003). Association analysis of polymorphisms in the upstream region of the human dopamine D4 receptor gene in schizophrenia. Schizophr. Res. 65, 9–14 10.1016/S0920-9964(03)00064-1
    1. Yamasue H., Iwanami A., Hirayasu Y., Yamada H., Abe O., Kuroki N., et al. (2004). Localized volume reduction in prefrontal, temporolimbic, and paralimbic regions in schizophrenia: an MRI parcellation study. Psychiatry Res. 131, 195–207 10.1016/j.pscychresns.2004.05.004
    1. Yan H., Tian L., Yan J., Sun W., Liu Q., Zhang Y. B., et al. (2012). Functional and anatomical connectivity abnormalities in cognitive division of anterior cingulate cortex in schizophrenia. PLoS ONE 7:e45659 10.1371/journal.pone.0045659
    1. Zald D. H. (2003). The human amygdala and the emotional evaluation of sensory stimuli. Brain Res. Brain Res. Rev. 41, 88–123 10.1016/S0165-0173(02)00248-5
    1. Zirnheld P. J., Carroll C. A., Kieffaber P. D., O'Donnell B. F., Shekhar A., Hetrick W. P. (2004). Haloperidol impairs learning and error-related negativity in humans. J. Cogn. Neurosci. 16, 1098–1112 10.1162/0898929041502779

Source: PubMed

3
Sottoscrivi