Time to treatment and patient outcomes among TB suspects screened by a single point-of-care xpert MTB/RIF at a primary care clinic in Johannesburg, South Africa

Colleen F Hanrahan, Katerina Selibas, Christopher B Deery, Heather Dansey, Kate Clouse, Jean Bassett, Lesley Scott, Wendy Stevens, Ian Sanne, Annelies Van Rie, Colleen F Hanrahan, Katerina Selibas, Christopher B Deery, Heather Dansey, Kate Clouse, Jean Bassett, Lesley Scott, Wendy Stevens, Ian Sanne, Annelies Van Rie

Abstract

Introduction: In December 2010, the World Health Organization recommended a single Xpert MTB/RIF assay as the initial diagnostic in people suspected of HIV-associated or drug resistant tuberculosis. Few data are available on the impact of this recommendation on patient outcomes. We describe the diagnostic follow-up, clinical characteristics and outcomes of a cohort of tuberculosis suspects screened using a single point-of-care Xpert.

Methods: Consecutive tuberculosis suspects at a primary care clinic in Johannesburg, South Africa were assessed for tuberculosis using point-of-care Xpert. Sputum smear microscopy and liquid culture were performed as reference standards. Xpert-negatives were evaluated clinically, and further assessed at the discretion of clinicians. Participants were followed for six months.

Results: From July-September 2011, 641 tuberculosis suspects were enrolled, of whom 69% were HIV-infected. Eight percent were positive by a single Xpert. Among 116 individuals diagnosed with TB, 66 (57%) were Xpert negative, of which 44 (67%) were empirical or radiological diagnoses and 22 (33%) were Xpert negative/culture-positive. The median time to tuberculosis treatment was 0 days (IQR: 0-0) for Xpert positives, 14 days (IQR: 5-35) for those diagnosed empirically, 14 days (IQR: 7-29) for radiological diagnoses, and 144 days (IQR: 28-180) for culture positives. Xpert negative tuberculosis cases were clinically similar to Xpert positives, including HIV status and CD4 count, and had similar treatment outcomes including mortality and time to antiretroviral treatment initiation.

Conclusions: In a high HIV-burden setting, a single Xpert identified less than half of those started on tuberculosis treatment, highlighting the complexity of TB diagnosis even in the Xpert era. Xpert at point-of-care resulted in same day treatment initiation in Xpert-positives, but had no impact on tuberculosis treatment outcomes or mortality.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Flow chart of diagnostic assessment…
Figure 1. Flow chart of diagnostic assessment and basis of TB treatment initiation in 641 TB suspects presenting to a primary care clinic in Johannesburg, South Africa.
The basis of diagnosis was defined as the earliest positive diagnostic test (smear, culture, Xpert or x-ray), or an empiric diagnosis if treatment was started in absence of or prior to any positive diagnostic test. Abbreviation: TB, tuberculosis; Neg, negative; Pos, positive; Cont, contaminated; NTM, non-tuberculous mycobacteria; ND, not done.
Figure 2. Time to TB treatment in…
Figure 2. Time to TB treatment in 114 TB cases, by basis of TB treatment initiation.
Kaplan-Meier curves showing time to treatment stratified by basis of TB diagnosis, excluding those diagnosed based on 2nd Xpert or sputum smear microscopy (n = 2). The median time to treatment and IQR for each basis of TB treatment initiation are listed. Abbreviation: TB, tuberculosis.
Figure 3. Two and six-month outcomes of…
Figure 3. Two and six-month outcomes of 591Xpert-negative TB suspects and 50 Xpert-positive TB suspects presenting to a primary care clinic in Johannesburg, South Africa.
Abbreviations: LTFU, lost to follow-up; TB, tuberculosis; mo, month; Rx, treatment.

References

    1. WHO (2011) Global Tuberculosis Control. Geneva.
    1. Blakemore R, Nabeta P, Davidow AL, Vadwai V, Tahirli R, et al. (2011) A multisite assessment of the quantitative capabilities of the Xpert MTB/RIF assay. Am J Respir Crit Care Med 184: 1076–1084.
    1. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, et al. (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363: 1005–1015.
    1. Chang K, Lu W, Wang J, Zhang K, Jia S, et al. (2012) Rapid and effective diagnosis of tuberculosis and rifampicin resistance with Xpert MTB/RIF assay: a meta-analysis. J Infect 64: 580–588.
    1. WHO (2011) Policy statement: automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF system. Geneva, Switzerland.
    1. Meyer-Rath G, Schnippel K, Long L, MacLeod W, Sanne I, et al. (2012) The impact and cost of scaling up GeneXpert MTB/RIF in South Africa. PLoS One 7: e36966.
    1. Banada PP, Sivasubramani SK, Blakemore R, Boehme C, Perkins MD, et al. (2010) Containment of bioaerosol infection risk by the Xpert MTB/RIF assay and its applicability to point-of-care settings. J Clin Microbiol 48: 3551–3557.
    1. Clouse K, Page-Shipp L, Dansey H, Moatlhodi B, Scott L, et al. (2012) Implementation of Xpert MTB/RIF for routine point-of-care diagnosis of tuberculosis at the primary care level. S Afr Med J 102: 805–807.
    1. Schnippel K, Meyer-Rath G, Long L, MacLeod W, Sanne I, et al. (2012) Scaling up Xpert MTB/RIF technology: the costs of laboratory- vs. clinic-based roll-out in South Africa. Trop Med Int Health 17: 1142–1151.
    1. Lawn SD, Kerkhoff AD, Wood R (2012) Location of Xpert(R) MTB/RIF in centralised laboratories in South Africa undermines potential impact. Int J Tuberc Lung Dis 16: 701; author reply 702.
    1. Theron G, Peter J, van Zyl-Smit R, Mishra H, Streicher E, et al. (2011) Evaluation of the Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in a high HIV prevalence setting. Am J Respir Crit Care Med 184: 132–140.
    1. Scott LE, McCarthy K, Gous N, Nduna M, Van Rie A, et al. (2011) Comparison of Xpert MTB/RIF with other nucleic acid technologies for diagnosing pulmonary tuberculosis in a high HIV prevalence setting: a prospective study. PLoS Med 8: e1001061.
    1. Lawn SD, Kerkhoff AD, Vogt M, Ghebrekristos Y, Whitelaw A, et al. (2012) Characteristics and early outcomes of patients with Xpert MTB/RIF-negative pulmonary tuberculosis diagnosed during screening before antiretroviral therapy. Clin Infect Dis 54: 1071–1079.
    1. Theron G, Pooran A, Peter J, van Zyl-Smit R, Kumar Mishra H, et al. (2012) Do adjunct tuberculosis tests, when combined with Xpert MTB/RIF, improve accuracy and the cost of diagnosis in a resource-poor setting? Eur Respir J 40: 161–168.
    1. Zou G (2004) A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol 159: 702–706.
    1. Harries AD (1997) Tuberculosis in Africa: clinical presentation and management. Pharmacol Ther 73: 1–50.
    1. Lawn SD, Kerkhoff AD, Vogt M, Wood R (2012) Diagnostic accuracy of a low-cost, urine antigen, point-of-care screening assay for HIV-associated pulmonary tuberculosis before antiretroviral therapy: a descriptive study. Lancet Infect Dis 12: 201–209.
    1. Yoon C, Cattamanchi A, Davis JL, Worodria W, den Boon S, et al. (2012) Impact of Xpert MTB/RIF testing on tuberculosis management and outcomes in hospitalized patients in Uganda. PLOS ONE 7: e48599.
    1. Straetemans M, Glaziou P, Bierrenbach AL, Sismanidis C, van der Werf MJ (2011) Assessing tuberculosis case fatality ratio: a meta-analysis. PLoS One 6: e20755.
    1. Kufa T, Mngomezulu V, Charalambous S, Hanifa Y, Fielding K, et al. (2012) Undiagnosed tuberculosis among HIV clinic attendees: association with antiretroviral therapy and implications for intensified case finding, isoniazid preventive therapy, and infection control. J Acquir Immune Defic Syndr 60: e22–28.

Source: PubMed

3
Sottoscrivi