Associations of vitamin D deficiency and vitamin D receptor (Cdx-2, Fok I, Bsm I and Taq I) polymorphisms with the risk of primary open-angle glaucoma

Yingjuan Lv, Qingbin Yao, Wenjiang Ma, Hua Liu, Jian Ji, Xiaorong Li, Yingjuan Lv, Qingbin Yao, Wenjiang Ma, Hua Liu, Jian Ji, Xiaorong Li

Abstract

Background: Vitamin D deficiency and vitamin D receptor gene polymorphisms are known to be significantly associated with high myopia. Whether this genetic variant may impact primary open-angle glaucoma is largely unknown. This study investigated whether vitamin D receptor gene polymorphisms are altered in primary open-angle glaucoma subjects carrying the risk allele, and whether vitamin D deficiency is an important factor in the development of glaucoma.

Methods: Seventy-three POAG patients and 71 age-matched controls from the Han population were enrolled. Serum levels of 1a, 25-Dihydroxyvitamin D3 were measured by enzyme-linked immunoabsorbent assay. Vitamin D receptor polymorphisms (Cdx-2, Fok I, Bsm I and Taq I) were analyzed using real-time polymerase-chain reaction high resolution melting analysis.

Results: Serum levels of 1a, 25-Dihydroxyvitamin in primary open-angle glaucoma patients were lower than in age-matched controls. Statistical analysis revealed a significant difference in the allelic frequencies of the BsmI and TaqI genotypes between primary open-angle glaucoma patients and age-matched controls, while other polymorphisms did not show any significant differences.

Conclusions: Vitamin D deficiency and the presence of the BsmI 'B' allele and the TaqI 't' allele are relevant risk factors in the development of glaucoma.

Trial registration: Clinical Trials.gov: NCT02539745 . The study was registered retrospectively on August 3rd, 2015. The first participant was enrolled on July 4th, 2013.

Keywords: Polymorphism; Primary open-angle glaucoma; Vitamin D deficiency; Vitamin D receptor.

Figures

Fig. 1
Fig. 1
Genotypes of VDR gene (a: Cdx-2, b: Fok I, c:Bsm I, d: Taq I) polymorphisms were determined by PCR-HRM

References

    1. Tehrani S. Gender difference in the pathophysiology and treatment of glaucoma. Curr Eye Res. 2015;40(2):191–200. doi: 10.3109/02713683.2014.968935.
    1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7. doi: 10.1136/bjo.2005.081224.
    1. Liu Y, Allingham RR. Molecular genetics in glaucoma. Exp Eye Res. 2011;93:331–9. doi: 10.1016/j.exer.2011.08.007.
    1. Burdon KP. Genome-wide association studies in the hunt for genes causing primary open-angle glaucoma: a review. Clin Experiment Ophthalmol. 2012;40:358–63. doi: 10.1111/j.1442-9071.2011.02744.x.
    1. Janssen SF, Gorgels TG, Ramdas WD, Klaver CC, van Duijn CM, Jansonius NM, et al. The vast complexity of primary open angle glaucoma: disease genes, risks, molecular mechanisms and pathobiology. Prog Retin Eye Res. 2013;37:31–67. doi: 10.1016/j.preteyeres.2013.09.001.
    1. Gemenetzi M, Yang Y, Lotery AJ. Current concepts on primary open-angle glaucoma genetics: a contribution to disease pathophysiology and future treatment. Eye (Lond) 2012;26(3):355–69. doi: 10.1038/eye.2011.309.
    1. Khan AO. Genetics of primary glaucoma. Curr Opin Ophthalmol. 2011;22(5):347–55. doi: 10.1097/ICU.0b013e32834922d2.
    1. Fingert JH. Primary open-angle glaucoma genes. Eye (Lond) 2011;25(5):587–95. doi: 10.1038/eye.2011.97.
    1. Huang X, Li M, Guo X, Li S, Xiao X, Jia X, et al. Mutation analysis of seven known glaucoma-associated genes in Chinese patients with glaucoma. Invest Ophthalmol Vis Sci. 2014;55(6):3594–602. doi: 10.1167/iovs.14-13927.
    1. Abecia E, Martínez-Jarreta B, Casalod Y, Bell B, Pinilla I, Honrubia FM. Genetic markers in primary open-angle glaucoma. Int Ophthalmol. 1996–1997;20(1–3):79–82.
    1. Carlberg C. Mechanisms of nuclear signalling by vitamin D3. Interplay with retinoid and thyroid hormone signalling. Eur J Biochem. 1995;231(3):517–27. doi: 10.1111/j.1432-1033.1995.tb20727.x.
    1. Schräder M, Bendik I, Becker-André M, Carlberg C. Interaction between retinoic acid and vitamin D signaling pathways. J Biol Chem. 1993;268:17830–6.
    1. Ferrari S, Bonjour JP, Rizzoli R. The vitamin d receptor gene and calcium metabolism. Trends Endocrinol Metab. 1998;9(7):259–65. doi: 10.1016/S1043-2760(98)00065-4.
    1. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83(6):835–9. doi: 10.1016/0092-8674(95)90199-X.
    1. Carlberg C. The vitamin D3 receptor in the context of the nuclear receptor superfamily: the central role of retinoid Xreceptor. Endocrine. 1996;4:91–105. doi: 10.1007/BF02782754.
    1. Levin AA, Sturzenbecker LJ, Kazmer S, Bosakowski T, Huselton C, Allenby G, et al. 9-Cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRa. Nature (London) 1992;355:359–61. doi: 10.1038/355359a0.
    1. Carlberg, C. Critical analysis of 1a, 25-dihydroxyvitamin D3 response elements. Proc. 10th Int. Vit. D Workshop. 1997; 268–275
    1. Morrison NA, Shine J, Fragonas J-C, Verkest V, McMenemey ML, Eisman JA. 1, 25-dihydroxyvitaminD-responsive element and glucocorticoid repression in the osteocalcin gene. Science. 1989;246:1158–61. doi: 10.1126/science.2588000.
    1. Annamaneni S, Bindu CH, Reddy KP, Vishnupriya S. Association of vitamin D receptor gene start codon (Fok1) polymorphism with high myopia. Oman J Ophthalmol. 2011;4(2):57–62. doi: 10.4103/0974-620X.83654.
    1. Ma F, Dai J, Sun X. Progress in understanding the association between high myopia and primary open-angle glaucoma. Clin Experiment Ophthalmol. 2014;42(2):190–7. doi: 10.1111/ceo.12158.
    1. Chang RT, Singh K. Myopia and glaucoma: diagnostic and therapeutic challenges. Curr Opin Ophthalmol. 2013;24(2):96–101. doi: 10.1097/ICU.0b013e32835cef31.
    1. Marcus MW, de Vries MM, Junoy Montolio FG, Jansonius NM. Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology. 2011;118(10):1989–94. doi: 10.1016/j.ophtha.2011.03.012.
    1. Kutuzova GD, Gabelt BT, Kiland JA, Hennes-Beann EA, Kaufman PL, DeLuca HF. 1α,25-Dihydroxyvitamin D(3) and its analog, 2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D(3) (2MD), suppress intraocular pressure in non-human primates. Arch Biochem Biophys. 2012;518(1):53–60. doi: 10.1016/j.abb.2011.10.022.
    1. GUIST G, STEFFEN C. Application and mechanism of high dosage of vitamin D therapy of glaucoma. Klin Monbl Augenheilkd Augenarztl Fortbild. 1953;123(5):555–68.
    1. Moras D, Gronemeyer H. The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol. 1998;10:384–91. doi: 10.1016/S0955-0674(98)80015-X.
    1. Torchia J, Glass C, Rosenfeld MG. Co-activators and co-repressors in the integration of transcriptional responses. Curr Opin Cell Biol. 1998;10:373–83. doi: 10.1016/S0955-0674(98)80014-8.
    1. Heishi M, Tazawa H, Matsuo T, Saruta T, Hanaoka M, Tsukamoto Y. A novel Van91 I polymorphism in the 1st intron of the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor gene and its effect on the urinary cAMP response to PTH. Biol Pharm Bull. 2000;23(4):386–9. doi: 10.1248/bpb.23.386.
    1. Pasutto F, Mardin CY, Michels-Rautenstrauss K, Weber BHF, Sticht H, Chavarria-Soley G, et al. Profiling of WDR36 Missense Variants in German Patients with Glaucoma. Invest Ophthalmol Vis Sci. 2008;49(1):270–4. doi: 10.1167/iovs.07-0500.
    1. Xiao H, Liu X, Zhong Y, Mao Z. The influence of surgical and medical interventions upon optic disc structure in patients with primary open angle glaucoma. Eye science. 2011;26:185–92.
    1. Allingham RR, Wiggs JL, Hauser ER, Larocque-Abramson KR, Santiago-Turla C, Broomer B, et al. Early adult-onset POAG linked to 15q11-13 using ordered subset analysis. Invest Ophthalmol Vis Sci. 2005;46(6):2002–5. doi: 10.1167/iovs.04-1477.
    1. Quigley HA, Tielsch JM, Katz J, Sommer A. Rate of progression in open-angle glaucoma estimated from cross-sectional prevalence of visual field damage. Am J Ophthalmol. 1996;122(3):355–63. doi: 10.1016/S0002-9394(14)72062-8.
    1. Asman P, Heijl A. Glaucoma hemifield test: automated visual field evaluation. Arch Ophthalmol. 1992;110:812–9. doi: 10.1001/archopht.1992.01080180084033.
    1. de Sousa Studart SA, Leite AC, Marinho AL, Pinto AC, Rabelo Júnior CN, de Melo Nunes R, Rocha HA, et al. Vitamin D levels in juvenile idiopathic arthritis from an equatorial region. Rheumatol Int. 2015 May 20
    1. Seeratanachot T, Sanguansermsri T, Shimbhu D. Detection of Hb H disease genotypes common in northern Thailand by quantitative real-time polymerase chain reaction and high resolution melting analyses. Hemoglobin. 2013;37(6):574–83. doi: 10.3109/03630269.2013.828228.
    1. Bai Y, Yu Y, Yu B, Ge J, Ji J, Lu H, et al. Association of vitamin D receptor polymorphisms with the risk of prostate cancer in the Han population of Southern China. BMC Med Genet. 2009;10:125. doi: 10.1186/1471-2350-10-125.
    1. Mostowska A, Lianeri M, Wudarski M, Olesińska M, Jagodziński PP. Vitamin D receptor gene BsmI, FokI, ApaI and TaqI polymorphisms and the risk of systemic lupus erythematosus. Mol Biol Rep. 2013;40(2):803–10. doi: 10.1007/s11033-012-2118-6.
    1. Krefting EA, Jorde R, Christoffersen T, Grimnes G. Vitamin D and intraocular pressure--results from a case–control and an intervention study. Acta Ophthalmol. 2014;92(4):345–9. doi: 10.1111/aos.12125.

Source: PubMed

3
Sottoscrivi