Effectiveness of a single intra-articular bone marrow aspirate concentrate (BMAC) injection in patients with grade 3 and 4 knee osteoarthritis

George S Themistocleous, George D Chloros, Ioannis M Kyrantzoulis, Ioannis A Georgokostas, Marios S Themistocleous, Panayiotis J Papagelopoulos, Olga D Savvidou, George S Themistocleous, George D Chloros, Ioannis M Kyrantzoulis, Ioannis A Georgokostas, Marios S Themistocleous, Panayiotis J Papagelopoulos, Olga D Savvidou

Abstract

Aim: To evaluate the clinical efficacy and safety of an intra-articular injection of bone marrow aspirate concentrate (BMAC) as a treatment option for osteoarthritis (OA) of the knee.

Materials and methods: Between June 2014 and February 2017, data from 233 patients with knee osteoarthritis treated with BMAC injection at a single center, were retrospectively evaluated. Only patients with idiopathic osteoarthritis were included. Exclusion criteria were post-traumatic osteoarthritis, previous knee surgery, age less than 50 years old or more than 85 years old, active infection, uncontrolled diabetes mellitus, rheumatological or other systemic disease, malignancy, or treatment with immunosuppressive drugs. Bone marrow from the iliac crest was aspirated/concentrated with a standardized technique using a single-spin manual method. Patients were evaluated before and after the procedure, using the numeric pain scale (NPS) and Oxford knee score (OKS). Mean follow-up period was 11 months, range (6-30 months).

Results: A total of 121 of 233 patients had completed data as previously defined and were included in the statistical analysis. There were 85 females and 36 males, with mean age 70 years (range 50-85). Compared to baseline, the mean NPS decreased from 8.33 to 4.49 (p < 0.001) and the mean OKS increased from 20.20 to 32.29 (P < 0.001) at final follow-up. There were no complications.

Conclusion: A single intra-articular injection of BMAC is a safe and reliable procedure that results in clinical improvement of knee OA.

Keywords: Evidence-based medicine; Surgery.

Figures

Fig. 1
Fig. 1
Bone marrow aspiration.
Fig. 2
Fig. 2
Cell separation layers starting from the top: Plasma mainly containing platelets, buffy coat with mononuclear HSCs and MSCs and bottom fraction with red blood cells (RBCs). BMAC consists mainly from buffy coat, a supernatant with platelets and small size MSCs and the very top of the RBC layer containing the largest size MSCs.
Fig. 3
Fig. 3
Flow diagram showing a summary of the procedure.

References

    1. Goldring M.B., Goldring S.R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. N. Y. Acad. Sci. 2010;1192:230–237.
    1. Ishiguro N., Kojima T., Poole A.R. Mechanism of cartilage destruction in osteoarthritis. Nagoya J. Med. Sci. 2002;65:73–84.
    1. Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage. 2013;21:1145–1153.
    1. Hootman J.M., Helmick C.G., Barbour K.E., Theis K.A., Boring M.A. Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable Activity limitation among US adults, 2015-2040. Arthritis Rheumatol. (Hoboken, N.J.) 2016;68:1582–1587.
    1. Hootman J.M., Helmick C.G. Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum. 2006;54:226–229.
    1. Guccione A.A., Felson D.T., Anderson J.J. The effects of specific medical conditions on the functional limitations of elders in the Framingham study. Am. J. Public Health. 1994;84:351–358.
    1. Johnson V.L., Hunter D.J. The epidemiology of osteoarthritis. Best Prac. Res. Clin. Rheumatol. 2014;28:5–15.
    1. Bitton R. The economic burden of osteoarthritis. Am. J. Manag. Care. 2009;15:S230–S235.
    1. March L.M., Bachmeier C.J. Economics of osteoarthritis: a global perspective. Bailliere’s Clin. Rheumatol. 1997;11:817–834.
    1. Lee A.S., Ellman M.B., Yan D. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. 2013;527:440–447.
    1. Kapoor M., Martel-Pelletier J., Lajeunesse D., Pelletier J.P., Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 2011;7:33–42.
    1. Baltzer A.W., Ostapczuk M.S., Stosch D., Seidel F., Granrath M. A new treatment for hip osteoarthritis: clinical evidence for the efficacy of autologous conditioned serum. Orthop. Rev. 2013;5:59–64.
    1. Zheng D., Dan Y., Yang S.H. Controlled chondrogenesis from adipose-derived stem cells by recombinant transforming growth factor-beta3 fusion protein in peptide scaffolds. Acta Biomater. 2015;11:191–203.
    1. Mazor M., Lespessailles E., Coursier R., Daniellou R., Best T.M., Toumi H. Mesenchymal stem-cell potential in cartilage repair: an update. J. Cell Mol. Med. 2014;18:2340–2350.
    1. Gigante A., Cecconi S., Calcagno S., Busilacchi A., Enea D. Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc. Techniq. 2012;1:e175–e180.
    1. Kon E., Filardo G., Roffi A., Andriolo L., Marcacci M. New trends for knee cartilage regeneration: from cell-free scaffolds to mesenchymal stem cells. Curr. Rev. Musculoskel. Med. 2012;5:236–243.
    1. Simon L.S. Osteoarthritis. Curr. Rheumatol. Rep. 1999;1:45–47.
    1. McAlindon T.E., Bannuru R.R., Sullivan M.C. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage. 2014;22:363–388.
    1. Benke M., Shaffer B. Viscosupplementation treatment of arthritis pain. Curr. Pain Headache Rep. 2009;13:440–446.
    1. Jevsevar D., Donnelly P., Brown G.A., Cummins D.S. Viscosupplementation for osteoarthritis of the knee: a systematic review of the evidence. J. Bone Joint Surg. Am. Vol. 2015;97:2047–2060.
    1. Bellamy N., Campbell J., Robinson V., Gee T., Bourne R., Wells G. Intraarticular corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database Syst. Rev. 2006
    1. Kim J.D., Lee G.W., Jung G.H. Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. Eur. J. Orthop. Surg. Traumatol. Orthop. Traumatol. 2014;24:1505–1511.
    1. Belmont P.J., Jr., Goodman G.P., Waterman B.R., Bader J.O., Schoenfeld A.J. Thirty-day postoperative complications and mortality following total knee arthroplasty: incidence and risk factors among a national sample of 15,321 patients. J. Bone Joint Surg. Am. Vol. 2014;96:20–26.
    1. Anz A.W., Hackel J.G., Nilssen E.C., Andrews J.R. Application of biologics in the treatment of the rotator cuff, meniscus, cartilage, and osteoarthritis. J. Am. Acad. Orthop. Surg. 2014;22:68–79.
    1. Koelling S., Miosge N. Stem cell therapy for cartilage regeneration in osteoarthritis. Expet Opin. Biol. Ther. 2009;9:1399–1405.
    1. Szychlinska M.A., Stoddart M.J., D'Amora U., Ambrosio L., Alini M., Musumeci G. Mesenchymal stem cell-based cartilage regeneration approach and cell senescence: can we manipulate cell aging and function? Tissue Eng. B Rev. 2017;23:529–539.
    1. Pittenger M.F., Mackay A.M., Beck S.C. Multilineage potential of adult human mesenchymal stem cells. Science (New York, N.Y.). 1999;284:143–147.
    1. Lee E.H., Hui J.H. The potential of stem cells in orthopaedic surgery. J. Bone Joint Surg. Br. Vol. 2006;88:841–851.
    1. Turner L.G. Federal regulatory oversight of US clinics marketing adipose-derived autologous stem cell interventions: insights from 3 new FDA draft guidance documents. Mayo Clin. Proc. 2015;90:567–571.
    1. Jager M., Hernigou P., Zilkens C., Herten M., Fischer J., Krauspe R. [Cell therapy in bone-healing disorders] Orthopä. 2010;39:449–462. quiz 463.
    1. McCarrel T., Fortier L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J. Orthop. Res. Off. Publ Orthop. Res. Soc. 2009;27:1033–1042.
    1. Huang A.H., Motlekar N.A., Stein A., Diamond S.L., Shore E.M., Mauck R.L. High-throughput screening for modulators of mesenchymal stem cell chondrogenesis. Ann. Biomed. Eng. 2008;36:1909–1921.
    1. Indrawattana N., Chen G., Tadokoro M. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem. Biophys. Res. Commun. 2004;320:914–919.
    1. Chen F.H., Tuan R.S. Mesenchymal stem cells in arthritic diseases. Arthritis Res. Ther. 2008;10:223.
    1. Steinert A.F., Rackwitz L., Gilbert F., Noth U., Tuan R.S. Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl. Med. 2012;1:237–247.
    1. Sampson S., Botto-van Bemden A., Aufiero D. Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease. Physician Sportsmed. 2013;41:7–18.
    1. Jevotovsky D.S., Alfonso A.R., Einhorn T.A., Chiu E.S. Osteoarthritis and stem cell therapy in humans: a systematic review. Osteoarthritis Cartilage. 2018;26:711–729.
    1. Hendrich C., Franz E., Waertel G., Krebs R., Jager M. Safety of autologous bone marrow aspiration concentrate transplantation: initial experiences in 101 patients. Orthop. Rev. 2009;1:e32.
    1. Jager M., Jelinek E.M., Wess K.M. Bone marrow concentrate: a novel strategy for bone defect treatment. Curr. Stem Cell Res. Ther. 2009;4:34–43.
    1. Sampson S., Smith J., Vincent H., Aufiero D., Zall M., Botto-van-Bemden A. Intra-articular bone marrow concentrate injection protocol: short-term efficacy in osteoarthritis. Regen. Med. 2016;11:511–520.
    1. Shapiro S.A., Kazmerchak S.E., Heckman M.G., Zubair A.C., O'Connor M.I. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. Am. J. Sports Med. 2016
    1. Centeno C.J., Al-Sayegh H., Bashir J., Goodyear S., Freeman M.D. A dose response analysis of a specific bone marrow concentrate treatment protocol for knee osteoarthritis. BMC Muscoskel. Disord. 2015;16:258.
    1. Kellgren J.H., Lawrence J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957;16:494–502.
    1. Schippinger G., Pruller F., Divjak M. Autologous platelet-rich plasma preparations: influence of nonsteroidal anti-inflammatory drugs on platelet function. Orthop. J. Sports Med. 2015;3
    1. Wyles C.C., Houdek M.T., Wyles S.P., Wagner E.R., Behfar A., Sierra R.J. Differential cytotoxicity of corticosteroids on human mesenchymal stem cells. Clin. Orthop. Relat. Res. 2015;473:1155–1164.
    1. Peters A.E., Watts A.E. Biopsy needle advancement during bone marrow aspiration increases mesenchymal stem cell concentration. Front. Vet. Sci. 2016;3:23.
    1. Strimpakos N., Dapka F., Papachristou A., Kapreli E. The 12-item oxford knee score: cross-cultural adaptation into Greek and assessment of its psychometric properties. Physiotherapy. 2015;101(Supplement 1):e1445–e1446.
    1. O'Driscoll S.W. The healing and regeneration of articular cartilage. J. Bone Joint Surg. Am. Vol. 1998;80:1795–1812.
    1. Bianco P., Riminucci M., Gronthos S., Robey P.G. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells (Dayton, Ohio) 2001;19:180–192.
    1. Maxson S., Lopez E.A., Yoo D., Danilkovitch-Miagkova A., Leroux M.A. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl. Med. 2012;1:142–149.
    1. Li H., Fu X. Mechanisms of action of mesenchymal stem cells in cutaneous wound repair and regeneration. Cell Tissue Res. 2012;348:371–377.
    1. Abumaree M., Al Jumah M., Pace R.A., Kalionis B. Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev. 2012;8:375–392.
    1. Quarto R., Mastrogiacomo M., Cancedda R. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 2001;344:385–386.
    1. Sauerbier S., Rickert D., Gutwald R. Bone marrow concentrate and bovine bone mineral for sinus floor augmentation: a controlled, randomized, single-blinded clinical and histological trial--per-protocol analysis. Tissue Eng. 2011;17:2187–2197.
    1. Gupta P.K., Das A.K., Chullikana A., Majumdar A.S. Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res. Ther. 2012;3:25.
    1. Oh J.H., Kim W., Park K.U., Roh Y.H. Comparison of the cellular composition and cytokine-release kinetics of various platelet-rich plasma preparations. Am. J. Sports Med. 2015;43:3062–3070.
    1. Centeno C., Pitts J., Al-Sayegh H., Freeman M. Efficacy of autologous bone marrow concentrate for knee osteoarthritis with and without adipose graft. BioMed Res. Int. 2014;2014:370621.
    1. Giannini S., Buda R., Cavallo M. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury. 2010;41:1196–1203.
    1. Kim Y.S., Choi Y.J., Lee S.W. Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study. Osteoarthritis Cartilage. 2016;24:237–245.
    1. Davatchi F., Abdollahi B.S., Mohyeddin M., Shahram F., Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int. J. Rheum. Dis. 2011;14:211–215.
    1. Emadedin M., Aghdami N., Taghiyar L. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch. Iran. Med. 2012;15:422–428.
    1. Centeno C.J., Busse D., Kisiday J., Keohan C., Freeman M., Karli D. Regeneration of meniscus cartilage in a knee treated with percutaneously implanted autologous mesenchymal stem cells. Med. Hypotheses. 2008;71:900–908.
    1. Varma H.S., Dadarya B., Vidyarthi A. The new avenues in the management of osteo-arthritis of knee--stem cells. J. Indian Med. Assoc. 2010;108:583–585.
    1. Gigante A., Calcagno S., Cecconi S., Ramazzotti D., Manzotti S., Enea D. Use of collagen scaffold and autologous bone marrow concentrate as a one-step cartilage repair in the knee: histological results of second-look biopsies at 1 year follow-up. Int. J. Immunopathol. Pharmacol. 2011;24:69–72.
    1. Buda R., Vannini F., Cavallo M., Grigolo B., Cenacchi A., Giannini S. Osteochondral lesions of the knee: a new one-step repair technique with bone-marrow-derived cells. J. Bone Joint Surg. Am. Vol. 2010;92(Suppl 2):2–11.
    1. Wakitani S., Nawata M., Tensho K., Okabe T., Machida H., Ohgushi H. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J. Tissue Eng. Regen. Med. 2007;1:74–79.
    1. Haleem A.M., Singergy A.A., Sabry D. The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage. 2010;1:253–261.
    1. Nejadnik H., Hui J.H., Feng Choong E.P., Tai B.C., Lee E.H. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am. J. Sports Med. 2010;38:1110–1116.
    1. Bain B.J. Bone marrow biopsy morbidity and mortality. Br. J. Haematol. 2003;121:949–951.
    1. Sampson S., Botto-van Bemden A., Aufiero D. Stem cell therapies for treatment of cartilage and bone disorders: osteoarthritis, avascular necrosis, and non-union fractures. PM R J. Inj. Funct. Rehabil. 2015;7:S26–S32.
    1. Veronesi F., Giavaresi G., Tschon M., Borsari V., Nicoli Aldini N., Fini M. Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cell. Dev. 2013;22:181–192.
    1. Ankrum J., Karp J.M. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol. Med. 2010;16:203–209.
    1. Hernigou P., Poignard A., Beaujean F., Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J. Bone Joint Surg. Am. Vol. 2005;87:1430–1437.

Source: PubMed

3
Sottoscrivi