Bone marrow alterations and lower endothelial progenitor cell numbers in critical limb ischemia patients

Martin Teraa, Ralf W Sprengers, Peter E Westerweel, Hendrik Gremmels, Marie-José T H Goumans, Tom Teerlink, Frans L Moll, Marianne C Verhaar, JUVENTAS study group, M Teraa, R W Sprengers, M C Verhaar, F L Moll, R E G Schutgens, I C M Slaper-Cortenbach, Y van der Graaf, P A Doevendans, W P Th M Mali, Martin Teraa, Ralf W Sprengers, Peter E Westerweel, Hendrik Gremmels, Marie-José T H Goumans, Tom Teerlink, Frans L Moll, Marianne C Verhaar, JUVENTAS study group, M Teraa, R W Sprengers, M C Verhaar, F L Moll, R E G Schutgens, I C M Slaper-Cortenbach, Y van der Graaf, P A Doevendans, W P Th M Mali

Abstract

Background: Critical limb ischemia (CLI) is characterized by lower extremity artery obstruction and a largely unexplained impaired ischemic neovascularization response. Bone marrow (BM) derived endothelial progenitor cells (EPC) contribute to neovascularization. We hypothesize that reduced levels and function of circulating progenitor cells and alterations in the BM contribute to impaired neovascularization in CLI.

Methods: Levels of primitive (CD34(+) and CD133(+)) progenitors and CD34(+)KDR(+) EPC were analyzed using flow cytometry in blood and BM from 101 CLI patients in the JUVENTAS-trial (NCT00371371) and healthy controls. Blood levels of markers for endothelial injury (sE-selectin, sICAM-1, sVCAM-1, and thrombomodulin), and progenitor cell mobilizing and inflammatory factors were assessed by conventional and multiplex ELISA. BM levels and activity of the EPC mobilizing protease MMP-9 were assessed by ELISA and zymography. Circulating angiogenic cells (CAC) were cultured and their paracrine function was assessed.

Results: Endothelial injury markers were higher in CLI (P<0.01). CLI patients had higher levels of VEGF, SDF-1α, SCF, G-CSF (P<0.05) and of IL-6, IL-8 and IP-10 (P<0.05). Circulating EPC and BM CD34(+) cells (P<0.05), lymphocytic expression of CXCR4 and CD26 in BM (P<0.05), and BM levels and activity of MMP-9 (P<0.01) were lower in CLI. Multivariate regression analysis showed an inverse association between IL-6 and BM CD34(+) cell levels (P = 0.007). CAC from CLI patients had reduced paracrine function (P<0.0001).

Conclusion: CLI patients have reduced levels of circulating EPC, despite profound endothelial injury and an EPC mobilizing response. Moreover, CLI patients have lower BM CD34(+)-cell levels, which were inversely associated with the inflammatory marker IL-6, and lower BM MMP-9 levels and activity. The results of this study suggest that inflammation-induced BM exhaustion and a disturbed progenitor cell mobilization response due to reduced levels and activity of MMP-9 in the BM and alterations in the SDF-1α/CXCR4 interaction contribute to the attenuated neovascularization in CLI patients.

Conflict of interest statement

Competing Interests: Author Marie-José T.H. Goumans is a PLOS ONE Editorial Board Member. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Lower circulating progenitor cell levels…
Figure 1. Lower circulating progenitor cell levels in CLI patients.
Data represent median and P75. Circulating progenitor cell numbers in CLI patients (n = 101) and healthy controls (HC; n = 37). The number of circulating CD133+ and CD34+KDR+ EPC was significantly reduced in CLI patients (* P<0.05). No significant (ns) differences in circulating numbers were observed for CD34+ cells.
Figure 2. BM CD34 + progenitor cell…
Figure 2. BM CD34+ progenitor cell are reduced in CLI patients.
Data represent median and P75. BM progenitor cell numbers in CLI patients (n = 101) and healthy controls (HC; n = 12). CD34+ cells were significantly reduced (* P<0.05) in CLI patients compared to health controls. No significant (ns) differences in CD133+-cells and CD34+KDR+ EPC in the BM.
Figure 3. Altered expression of CD26 and…
Figure 3. Altered expression of CD26 and CXCR4 in blood and BM of CLI patients.
Data represent median and P75. The percentage of CXCR4 expressing lymphocytes was higher in the blood of CLI patients (n = 101) compared to healthy controls (HC; n = 37), while a significant reduction was observed in the BM (n = 101 and n = 12 for CLI patients and healthy controls, respectively). The percentage of CD26 expressing lymphocytes was not different in the PB, while a lower percentage of lymphocytes in the BM expressed CD26 in CLI patients. * P

Figure 4. Conditioned medium obtained from CAC…

Figure 4. Conditioned medium obtained from CAC cultured from CLI patients has impaired paracrine effects.

Figure 4. Conditioned medium obtained from CAC cultured from CLI patients has impaired paracrine effects.
Data represent median and P75. Percentage of scratch wound closure stimulated with conditioned medium (CM) obtained from CLI derived CAC (n = 33) was significantly reduced (P
Similar articles
Cited by
References
    1. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, et al. (2007) Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg 33 Suppl 1: S1–75. - PubMed
    1. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, et al. (2001) Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286: 1317–1324. - PubMed
    1. Hirsch AT, Halverson SL, Treat-Jacobson D, Hotvedt PS, Lunzer MM, et al. (2001) The Minnesota Regional Peripheral Arterial Disease Screening Program: toward a definition of community standards of care. Vasc Med 6: 87–96. - PubMed
    1. Steg PG, Bhatt DL, Wilson PW, D'Agostino R Sr, Ohman EM, et al. (2007) One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA 297: 1197–1206. - PubMed
    1. Hung HS, Shyu WC, Tsai CH, Hsu SH, Lin SZ (2009) Transplantation of endothelial progenitor cells as therapeutics for cardiovascular diseases. Cell Transplant 18: 1003–1012. - PubMed
Show all 52 references
Publication types
MeSH terms
Grant support
The reported work was supported by the “Stichting Vrienden UMC Utrecht” on behalf of the Dirkzwager-Assink foundation (The Netherlands, grant CS 06.007, www.vriendenumcutrecht.nl), The Dutch Heart Foundation (The Netherlands, grant 2008B094, www.hartstichting.nl), the Netherlands Organisation for Scientific Research (The Netherlands, ZonMw-TAS grant 116001026, www.zonmw.nl) and foundation “De Drie Lichten” (The Netherlands, grant 10/06). M.C. Verhaar is supported by the Netherlands Organisation for Scientific Research (NWO) (The Netherlands, Vidi grant 016.096.359, www.nwo.nl). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 4. Conditioned medium obtained from CAC…
Figure 4. Conditioned medium obtained from CAC cultured from CLI patients has impaired paracrine effects.
Data represent median and P75. Percentage of scratch wound closure stimulated with conditioned medium (CM) obtained from CLI derived CAC (n = 33) was significantly reduced (P

References

    1. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, et al. (2007) Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg 33 Suppl 1: S1–75.
    1. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, et al. (2001) Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286: 1317–1324.
    1. Hirsch AT, Halverson SL, Treat-Jacobson D, Hotvedt PS, Lunzer MM, et al. (2001) The Minnesota Regional Peripheral Arterial Disease Screening Program: toward a definition of community standards of care. Vasc Med 6: 87–96.
    1. Steg PG, Bhatt DL, Wilson PW, D'Agostino R Sr, Ohman EM, et al. (2007) One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA 297: 1197–1206.
    1. Hung HS, Shyu WC, Tsai CH, Hsu SH, Lin SZ (2009) Transplantation of endothelial progenitor cells as therapeutics for cardiovascular diseases. Cell Transplant 18: 1003–1012.
    1. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, et al. (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109: 625–637.
    1. Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, et al. (2011) Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 109: 724–728.
    1. Scheubel RJ, Holtz J, Friedrich I, Borgermann J, Kahrstedt S, et al. (2010) Paracrine effects of CD34 progenitor cells on angiogenic endothelial sprouting. Int J Cardiol 139: 134–141.
    1. Iyer V, Klebba I, McCready J, Arendt LM, Betancur-Boissel M, et al. (2012) Estrogen promotes ER-negative tumor growth and angiogenesis through mobilization of bone marrow-derived monocytes. Cancer Res 72: 2705–2713.
    1. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, et al. (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89: E1–E7.
    1. Werner N, Nickenig G (2006) Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol 26: 257–266.
    1. Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, et al. (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45: 1449–1457.
    1. Fadini GP, Sartore S, Albiero M, Baesso I, Murphy E, et al. (2006) Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol 26: 2140–2146.
    1. Cobellis G, Maione C, Botti C, Coppola A, Silvestroni A, et al. (2010) Beneficial effects of VEGF secreted from stromal cells in supporting endothelial cell functions: therapeutic implications for critical limb ischemia. Cell Transplant 19: 1425–1437.
    1. Fox A, Smythe J, Fisher N, Tyler MP, McGrouther DA, et al. (2008) Mobilization of endothelial progenitor cells into the circulation in burned patients. Br J Surg 95: 244–251.
    1. Laing AJ, Dillon JP, Condon ET, Street JT, Wang JH, et al. (2007) Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma. J Orthop Res 25: 44–50.
    1. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, et al. (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103: 2776–2779.
    1. Kissel CK, Lehmann R, Assmus B, Aicher A, Honold J, et al. (2007) Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J Am Coll Cardiol 49: 2341–2349.
    1. Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, et al. (2004) Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109: 1615–1622.
    1. Chen MC, Sheu JJ, Wang PW, Chen CY, Kuo MC, et al. (2009) Complications impaired endothelial progenitor cell function in Type 2 diabetic patients with or without critical leg ischaemia: implication for impaired neovascularization in diabetes. Diabet Med 26: 134–141.
    1. Morishita T, Uzui H, Nakano A, Mitsuke Y, Geshi T, et al. (2012) Number of endothelial progenitor cells in peripheral artery disease as a marker of severity and association with pentraxin-3, malondialdehyde-modified low-density lipoprotein and membrane type-1 matrix metalloproteinase. J Atheroscler Thromb 19: 149–158.
    1. Sieveking DP, Buckle A, Celermajer DS, Ng MK (2008) Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 51: 660–668.
    1. Oda M, Toba K, Kato K, Ozawa T, Yanagawa T, et al. (2012) Hypocellularity and insufficient expression of angiogenic factors in implanted autologous bone marrow in patients with chronic critical limb ischemia. Heart Vessels 27: 38–45.
    1. Sprengers RW, Moll FL, Teraa M, Verhaar MC (2010) Rationale and design of the JUVENTAS trial for repeated intra-arterial infusion of autologous bone marrow-derived mononuclear cells in patients with critical limb ischemia. J Vasc Surg 51: 1564–1568.
    1. Wang CH, Cherng WJ, Yang NI, Hsu CM, Yeh CH, et al. (2008) Cyclosporine increases ischemia-induced endothelial progenitor cell mobilization through manipulation of the CD26 system. Am J Physiol Regul Integr Comp Physiol 294: R811–R818.
    1. Christopherson KW, Cooper S, Broxmeyer HE (2003) Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood 101: 4680–4686.
    1. Teerlink T, Nijveldt RJ, de Jong S, van Leeuwen PA (2002) Determination of arginine, asymmetric dimethylarginine, and symmetric dimethylarginine in human plasma and other biological samples by high-performance liquid chromatography. Anal Biochem 303: 131–137.
    1. de Jong S, Teerlink T (2006) Analysis of asymmetric dimethylarginine in plasma by HPLC using a monolithic column. Anal Biochem 353: 287–289.
    1. de Kleijn DP, Sluijter JP, Smit J, Velema E, Richard W, et al. (2001) Furin and membrane type-1 metalloproteinase mRNA levels and activation of metalloproteinase-2 are associated with arterial remodeling. FEBS Lett 501: 37–41.
    1. Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, et al. (2008) Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197: 496–503.
    1. Westerweel PE, Luijten RK, Hoefer IE, Koomans HA, Derksen RH, et al. (2007) Haematopoietic and endothelial progenitor cells are deficient in quiescent systemic lupus erythematosus. Ann Rheum Dis 66: 865–870.
    1. Jie KE, Zaikova MA, Bergevoet MW, Westerweel PE, Rastmanesh M, et al. (2010) Progenitor cells and vascular function are impaired in patients with chronic kidney disease. Nephrol Dial Transplant 25: 1875–1882.
    1. Secchiero P, Candido R, Corallini F, Zacchigna S, Toffoli B, et al. (2006) Systemic tumor necrosis factor-related apoptosis-inducing ligand delivery shows antiatherosclerotic activity in apolipoprotein E-null diabetic mice. Circulation 114: 1522–1530.
    1. Cheng XW, Kuzuya M, Nakamura K, Maeda K, Tsuzuki M, et al. (2007) Mechanisms underlying the impairment of ischemia-induced neovascularization in matrix metalloproteinase 2-deficient mice. Circ Res 100: 904–913.
    1. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–1169.
    1. Fadini GP, Sartore S, Schiavon M, Albiero M, Baesso I, et al. (2006) Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia 49: 3075–3084.
    1. Grisar J, Aletaha D, Steiner CW, Kapral T, Steiner S, et al. (2007) Endothelial progenitor cells in active rheumatoid arthritis: effects of tumour necrosis factor and glucocorticoid therapy. Ann Rheum Dis 66: 1284–1288.
    1. Junhui Z, Xingxiang W, Guosheng F, Yunpeng S, Furong Z, et al. (2008) Reduced number and activity of circulating endothelial progenitor cells in patients with idiopathic pulmonary arterial hypertension. Respir Med 102: 1073–1079.
    1. Nikolaisen C, Figenschau Y, Nossent JC (2008) Anemia in early rheumatoid arthritis is associated with interleukin 6-mediated bone marrow suppression, but has no effect on disease course or mortality. J Rheumatol 35: 380–386.
    1. Tousoulis D, Andreou I, Antoniades C, Tentolouris C, Stefanadis C (2008) Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization: therapeutic implications for cardiovascular diseases. Atherosclerosis 201: 236–247.
    1. Herder C, Schottker B, Rothenbacher D, Roden M, Kolb H, et al. (2011) Interleukin-6 in the prediction of primary cardiovascular events in diabetes patients: results from the ESTHER study. Atherosclerosis 216: 244–247.
    1. Braunersreuther V, Mach F, Steffens S (2007) The specific role of chemokines in atherosclerosis. Thromb Haemost 97: 714–721.
    1. Huang PH, Chen YH, Wang CH, Chen JS, Tsai HY, et al. (2009) Matrix metalloproteinase-9 is essential for ischemia-induced neovascularization by modulating bone marrow-derived endothelial progenitor cells. Arterioscler Thromb Vasc Biol 29: 1179–1184.
    1. Belotti D, Calcagno C, Garofalo A, Caronia D, Riccardi E, et al. (2008) Vascular endothelial growth factor stimulates organ-specific host matrix metalloproteinase-9 expression and ovarian cancer invasion. Mol Cancer Res 6: 525–534.
    1. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, et al. (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9: 1370–1376.
    1. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, et al. (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297: 1186–1190.
    1. Hirata Y, Nagata D, Suzuki E, Nishimatsu H, Suzuki J, et al. (2010) Diagnosis and treatment of endothelial dysfunction in cardiovascular disease. Int Heart J 51: 1–6.
    1. Palombo C, Kozakova M, Morizzo C, Gnesi L, Barsotti MC, et al. (2011) Circulating endothelial progenitor cells and large artery structure and function in young subjects with uncomplicated type 1 diabetes. Cardiovasc Diabetol 10: 88.
    1. Hur J, Yang HM, Yoon CH, Lee CS, Park KW, et al. (2007) Identification of a novel role of T cells in postnatal vasculogenesis: characterization of endothelial progenitor cell colonies. Circulation 116: 1671–1682.
    1. van Weel V, Toes RE, Seghers L, Deckers MM, de Vries MR, et al. (2007) Natural killer cells and CD4+ T-cells modulate collateral artery development. Arterioscler Thromb Vasc Biol 27: 2310–2318.
    1. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967.
    1. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, et al. (2000) Expression of VEGFR–2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95: 952–958.

Source: PubMed

3
Sottoscrivi