Prospective randomized trial to assess effects of continuing hormone therapy on cerebral function in postmenopausal women at risk for dementia

Natalie L Rasgon, Cheri L Geist, Heather A Kenna, Tonita E Wroolie, Katherine E Williams, Daniel H S Silverman, Natalie L Rasgon, Cheri L Geist, Heather A Kenna, Tonita E Wroolie, Katherine E Williams, Daniel H S Silverman

Abstract

The objective of this study was to examine the effects of estrogen-based hormone therapy (HT) on regional cerebral metabolism in postmenopausal women (mean age = 58, SD = 5) at risk for development of dementia. The prospective clinical trial design included pre- and post-intervention neuroimaging of women randomized to continue (HT+) or discontinue (HT-) therapy following an average of 10 years of use. The primary outcome measure was change in brain metabolism during the subsequent two years, as assessed with fluorodeoxyglucose-18 positron emission tomography (FDG-PET). Longitudinal FDG-PET data were available for 45 study completers. Results showed that women randomized to continue HT experienced relative preservation of frontal and parietal cortical metabolism, compared with women randomized to discontinue HT. Women who discontinued 17-β estradiol (17βE)-based HT, as well as women who continued conjugated equine estrogen (CEE)-based HT, exhibited significant decline in metabolism of the precuneus/posterior cingulate cortical (PCC) area. Significant decline in PCC metabolism was additionally seen in women taking concurrent progestins (with either 17βE or CEE). Together, these findings suggest that among postmenopausal subjects at risk for developing dementia, regional cerebral cortical metabolism is relatively preserved for at least two years in women randomized to continue HT, compared with women randomized to discontinue HT. In addition, continuing unopposed 17βE therapy is associated specifically with preservation of metabolism in PCC, known to undergo the most significant decline in the earliest stages of Alzheimer's disease.

Trial registration: ClinicalTrials.gov NCT00097058.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Study Subject Flow.
Figure 1. Study Subject Flow.
Figure 2. Bilateral medial frontal metabolism (first…
Figure 2. Bilateral medial frontal metabolism (first row) and left temporo-occipital metabolism (second row) were significantly preserved in HT+ women who were ApoE-ε4 negative, compared to HT− women who were ApoE-ε4 negative.
Color voxels shown above have significance of p

Figure 3. Subjects who discontinued 17β-E demonstrated…

Figure 3. Subjects who discontinued 17β-E demonstrated significant decline in the precuneus/posterior cingulate (green arrows…

Figure 3. Subjects who discontinued 17β-E demonstrated significant decline in the precuneus/posterior cingulate (green arrows in part A), while this was not seen in subjects that continued 17β-E (green arrows in part B).
Subjects who continued CEE underwent significant declines in the primary visual cortex and precuneous/posterior cingulate (blue and green arrows in part C, respectively). In a difference of differences analysis, the primary visual cortex was the region of most significant difference between subjects who continued on CEE versus 17β-E (blue arrow in part D). All color voxels are significant at p

Figure 4. Subjects that discontinued E opposed…

Figure 4. Subjects that discontinued E opposed by progesterone and stayed off HT for two…

Figure 4. Subjects that discontinued E opposed by progesterone and stayed off HT for two years demonstrated decline in the medial frontal gyrus, while subjects that discontinued unopposed E and stayed off HT for two years demonstrated decline in the precuneous and dorsofrontal cortex.
Color voxels shown above have significance p

Figure 5. HT+ women continuing on 17β-E…

Figure 5. HT+ women continuing on 17β-E with concurrent progesterone demonstrated decreased metabolism with the…

Figure 5. HT+ women continuing on 17β-E with concurrent progesterone demonstrated decreased metabolism with the statistical cluster mapping from the lateral parietotemporal cortex, extending medially through the brain into the posterior cingulate.
The posterior cingulate was the most significantly different metabolic area between subjects continuing use of opposed 17β-E versus subjects on unopposed 17β-E. Color voxels shown above have significance of p
Similar articles
Cited by
References
    1. Brann D, Dhandapani K, Wakade C, Mahesh V, Khan M (2007) Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 72: 381–405. - PMC - PubMed
    1. Suzuki S, Brown C, Wise P (2006) Mechanisms of neuroprotection by estrogen. Endocrine 29: 209–215. - PubMed
    1. Frick KM (2012) Building a better hormone therapy? How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline. Behav Neurosci 126: 29–53. - PMC - PubMed
    1. Henderson VW (2011) Gonadal hormones and cognitive aging: a midlife perspective. Womens Health (Lond Engl) 7: 81–93. - PMC - PubMed
    1. Gleason CE, Carlsson CM, Johnson S, Atwood C, Asthana S (2005) Clinical pharmacology and differential cognitive efficacy of estrogen preparations. Ann N Y Acad Sci 1052: 93–115. - PubMed
Show all 69 references
Publication types
MeSH terms
Associated data
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Figure 3. Subjects who discontinued 17β-E demonstrated…
Figure 3. Subjects who discontinued 17β-E demonstrated significant decline in the precuneus/posterior cingulate (green arrows in part A), while this was not seen in subjects that continued 17β-E (green arrows in part B).
Subjects who continued CEE underwent significant declines in the primary visual cortex and precuneous/posterior cingulate (blue and green arrows in part C, respectively). In a difference of differences analysis, the primary visual cortex was the region of most significant difference between subjects who continued on CEE versus 17β-E (blue arrow in part D). All color voxels are significant at p

Figure 4. Subjects that discontinued E opposed…

Figure 4. Subjects that discontinued E opposed by progesterone and stayed off HT for two…

Figure 4. Subjects that discontinued E opposed by progesterone and stayed off HT for two years demonstrated decline in the medial frontal gyrus, while subjects that discontinued unopposed E and stayed off HT for two years demonstrated decline in the precuneous and dorsofrontal cortex.
Color voxels shown above have significance p

Figure 5. HT+ women continuing on 17β-E…

Figure 5. HT+ women continuing on 17β-E with concurrent progesterone demonstrated decreased metabolism with the…

Figure 5. HT+ women continuing on 17β-E with concurrent progesterone demonstrated decreased metabolism with the statistical cluster mapping from the lateral parietotemporal cortex, extending medially through the brain into the posterior cingulate.
The posterior cingulate was the most significantly different metabolic area between subjects continuing use of opposed 17β-E versus subjects on unopposed 17β-E. Color voxels shown above have significance of p
Similar articles
Cited by
References
    1. Brann D, Dhandapani K, Wakade C, Mahesh V, Khan M (2007) Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 72: 381–405. - PMC - PubMed
    1. Suzuki S, Brown C, Wise P (2006) Mechanisms of neuroprotection by estrogen. Endocrine 29: 209–215. - PubMed
    1. Frick KM (2012) Building a better hormone therapy? How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline. Behav Neurosci 126: 29–53. - PMC - PubMed
    1. Henderson VW (2011) Gonadal hormones and cognitive aging: a midlife perspective. Womens Health (Lond Engl) 7: 81–93. - PMC - PubMed
    1. Gleason CE, Carlsson CM, Johnson S, Atwood C, Asthana S (2005) Clinical pharmacology and differential cognitive efficacy of estrogen preparations. Ann N Y Acad Sci 1052: 93–115. - PubMed
Show all 69 references
Publication types
MeSH terms
Associated data
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Figure 4. Subjects that discontinued E opposed…
Figure 4. Subjects that discontinued E opposed by progesterone and stayed off HT for two years demonstrated decline in the medial frontal gyrus, while subjects that discontinued unopposed E and stayed off HT for two years demonstrated decline in the precuneous and dorsofrontal cortex.
Color voxels shown above have significance p

Figure 5. HT+ women continuing on 17β-E…

Figure 5. HT+ women continuing on 17β-E with concurrent progesterone demonstrated decreased metabolism with the…

Figure 5. HT+ women continuing on 17β-E with concurrent progesterone demonstrated decreased metabolism with the statistical cluster mapping from the lateral parietotemporal cortex, extending medially through the brain into the posterior cingulate.
The posterior cingulate was the most significantly different metabolic area between subjects continuing use of opposed 17β-E versus subjects on unopposed 17β-E. Color voxels shown above have significance of p
Similar articles
Cited by
References
    1. Brann D, Dhandapani K, Wakade C, Mahesh V, Khan M (2007) Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 72: 381–405. - PMC - PubMed
    1. Suzuki S, Brown C, Wise P (2006) Mechanisms of neuroprotection by estrogen. Endocrine 29: 209–215. - PubMed
    1. Frick KM (2012) Building a better hormone therapy? How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline. Behav Neurosci 126: 29–53. - PMC - PubMed
    1. Henderson VW (2011) Gonadal hormones and cognitive aging: a midlife perspective. Womens Health (Lond Engl) 7: 81–93. - PMC - PubMed
    1. Gleason CE, Carlsson CM, Johnson S, Atwood C, Asthana S (2005) Clinical pharmacology and differential cognitive efficacy of estrogen preparations. Ann N Y Acad Sci 1052: 93–115. - PubMed
Show all 69 references
Publication types
MeSH terms
Associated data
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 5. HT+ women continuing on 17β-E…
Figure 5. HT+ women continuing on 17β-E with concurrent progesterone demonstrated decreased metabolism with the statistical cluster mapping from the lateral parietotemporal cortex, extending medially through the brain into the posterior cingulate.
The posterior cingulate was the most significantly different metabolic area between subjects continuing use of opposed 17β-E versus subjects on unopposed 17β-E. Color voxels shown above have significance of p

References

    1. Brann D, Dhandapani K, Wakade C, Mahesh V, Khan M (2007) Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 72: 381–405.
    1. Suzuki S, Brown C, Wise P (2006) Mechanisms of neuroprotection by estrogen. Endocrine 29: 209–215.
    1. Frick KM (2012) Building a better hormone therapy? How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline. Behav Neurosci 126: 29–53.
    1. Henderson VW (2011) Gonadal hormones and cognitive aging: a midlife perspective. Womens Health (Lond Engl) 7: 81–93.
    1. Gleason CE, Carlsson CM, Johnson S, Atwood C, Asthana S (2005) Clinical pharmacology and differential cognitive efficacy of estrogen preparations. Ann N Y Acad Sci 1052: 93–115.
    1. Hu L, Yue Y, Zuo P, Jin Z, Feng F, et al. (2006) Evaluation of neuroprotective effects of long-term low dose hormone replacement therapy on postmenopausal women brain hippocampus using magnetic resonance scanner. Chin Med Sci J 21: 214–218.
    1. Boccardi M, Ghidoni R, Govoni S, Testa C, Benussi L, et al. (2006) Effects of hormone therapy on brain morphology of healthy postmenopausal women: a Voxel-based morphometry study. Menopause 13: 584–591.
    1. Lord C, Buss C, Lupien S, Pruessner J (2008) Hippocampal volumes are larger in postmenopausal women using estrogen therapy compared to past users, never users and men: A possible window of opportunity effect. Neurobiol Aging 29: 95–101.
    1. Raz N, Rodrigue KM, Kennedy KM, Acker JD (2004) Hormone replacement therapy and age-related brain shrinkage: regional effects. Neuroreport 15: 2531–2534.
    1. Robertson D, Craig M, van Amelsvoort T, Daly E, Moore C, et al. (2009) Effects of estrogen therapy on age-related differences in gray matter concentration. Climacteric 12: 301–309.
    1. Shumaker S, Legault C, Kuller L, Rapp S, Thal L, et al. (2004) Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women's Health Initiative Memory Study. JAMA 291: 2947–2958.
    1. Shumaker S, Legault C, Rapp S, Thal L, Wallace R, et al. (2003) Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women's Health Initiative Memory Study: a randomized controlled trial. JAMA 289: 2651–2662.
    1. Harman S, Naftolin F, Brinton E, Judelson D (2005) Is the estrogen controversy over? Deconstructing the Women's Health Initiative Study: a critical evaluation of the evidence. Annals of the New York Academy of Science 1052: 43–56.
    1. McKhann G, Drachman D, Folstein M, Katzman R, Price D, et al. (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task force on Alzheimer's disease. Neurology 34: 939–944.
    1. Small G, Mazziotta J, Collins M, Baxter L, Phelps M, et al. (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 273: 942–947.
    1. Small G, La Rue A, Komo S, Kaplan A, Mandelkern M (1995) Predictors of cognitive change in middle-aged and older adults with memory loss. Am J Psychiatry 152: 1757–1764.
    1. Silverman D, Small G, Phelps M (1999) Clinical Value of Neuroimaging in the Diagnosis of Dementia. Sensitivity and Specificity of Regional Cerebral Metabolic and Other Parameters for Early Identification of Alzheimer's Disease. Clin Positron Imaging 2: 119–130.
    1. Wolf H, Jelic V, Gertz H, Nordberg A, Julin P, et al. (2003) A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurology Scandinavica 179: 52–76.
    1. Bassett S, Yousem D, Cristinzio C, Kusevic I, Yassa M, et al. (2006) Familial risk for Alzheimer's disease alters fMRI activation patterns. Brain 129: 1229–1239.
    1. Houston W, Delis D, Lansing A, Jacobson M, Cobell K, et al. (2005) Executive function asymmetry in older adults genetically at-risk for Alzheimer's disease: verbal versus design fluency. Journal of the International Neuropsychological Society 11: 863–870.
    1. Jacobson M, Delis D, Bondi M, Salmon D (2005) Asymmetry in auditory and spatial attention span in normal elderly genetically at risk for Alzheimer's disease. Journal of Clinical and Experimental Neuropsychology 27: 240–253.
    1. Jacobson M, Delis D, Lansing A, Houston W, Olsen R, et al. (2005) Asymmetries in global-local processing ability in elderly people with the apolipoprotein e-episilon4 allele. Neuropsychology 19: 822–829.
    1. Johnson SC, Schmitz TW, Trivedi MA, Ries ML, Torgerson BM, et al. (2006) The influence of Alzheimer disease family history and apolipoprotein E epsilon4 on mesial temporal lobe activation. J Neurosci 26: 6069–6076.
    1. Wishart H, Saykin A, Rabin L, Santulli R, Flashman L, et al. (2006) Increased brain activiation during working memory in cognitively intact adults with the APOE epsilon4 allele. American Journal of Psychiatry 1603–1610.
    1. Smith C, Andersen A, Kryscio R, Schmitt F, Kindy M, et al. (1999) Altered brain activation in cognitively intact individuals at high risk for Alzheimer's disease. Neurology 53: 1391–1396.
    1. Bookheimer S, Strojwas M, Cohen M, Saunders A, Pericak-Vance M, et al. (2000) Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med 343: 450–456.
    1. Bondi M, Houston W, Eyler L, Brown G (2005) fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 64: 501–508.
    1. Han S, Houston W, Jak A, Eyler L, Nagel B, et al. (2007) Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemispheric compensatory response. Neurobiology of Aging 28: 238–247.
    1. Smith C, Andersen A, Kryscio R, Schmitt F, Kindy M, et al. (2002) Women at risk for AD show increased parietal activation during a fluency task. Neurology 58: 1197–1202.
    1. Hom J, Turner M, Risser R, Bonte F, Tintner R (1994) Cognitive deficits in asymptomatic first-degree relatives of Alzheimer's disease patients. Journal of Clinical and Experimental Neuropsychology 16: 568–576.
    1. LaRue A, Matsuyama S, McPherson S, Sherman J, Jarvik L (1992) Cognitive performance in relatives of patients with probably Alzheimer's disease: an age at onset effect? Journal of Clinical and Experimental Neuropsychology 14: 533–538.
    1. LaRue A, O'Hara R, Matsuyama S, Jarvik L (1995) Cognitive changes in young-old adults: effect of family history of dementia. Journal of Clinical and Experimental Neuropsychology 17: 65–70.
    1. Jarvik L, Harrison T, Holt L, Jimenez E, Larson S, et al. (2005) Middle-aged children of Alzheimer parents, a pilot study: stable neurocognitive performance at 20-year follow-up. JGPN 18: 187–191.
    1. Small G, Leuchter A, Mandelkern M, LaRue A, Okonek A, et al. (1993) Clinical, neuroimaging, and environmental risk differences in monozygotic females twins appearing discordant for dementia of the Alzheimer type. Archives of Neurology 50: 209–219.
    1. Newman S, Warrington E, Kennedy A, Rossor M (1994) The earliest cognitive change in a person with familial Alzheimer's disease: presymptomatic neuropsychological features in a pedigree with familial Alzheimer's disease confirmed at necropsy. Journal of Neurology, Neurosurgery, & Psychiatry 57: 967–972.
    1. Lehtovirta M, Soininen H, Helisalmi S, Mannermaa A, Helkala E, et al. (1996) Clinical and neuropsychological characteristics in familial and sporadic Alzheimer's disease: relation to apolipoprotein E polymorphism. Neurology 46: 413–419.
    1. Lehtovirta M, Soininen H, Laakso M, Partanen K, Helisalmi S, et al. (1996) SPECT and MRI analysis in Alzheimer's disease: relation to apolipoprotein E episilon 4 allele. Journal of Neurology, Neurosurgery, & Psychiatry 60: 644–649.
    1. Silverman DH, Geist CL, Kenna HA, Williams K, Wroolie T, et al. (2011) Differences in regional brain metabolism associated with specific formulations of hormone therapy in postmenopausal women at risk for AD. Psychoneuroendocrinology 36: 502–513.
    1. Rasgon NL, Silverman D, Siddarth P, Miller K, Ercoli LM, et al. (2005) Estrogen use and brain metabolic change in postmenopausal women. Neurobiol Aging 26: 229–235.
    1. Hamilton M (1960) A rating scale for depression. Journal of neurology, neurosurgery, and psychiatry 23: 56–62.
    1. Folstein M, Folstein S, McHugh P (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189–198.
    1. Polkowski K, Mazurek A (2000) Biological properties of genistein. A review of in vitro and vivo data. Acta Pol Pharm 57: 135–155.
    1. Vincent A, Fitzpatrick L (2000) Soy isoflavones: are they useful in menopause? Mayo Clin Proceed 75: 1174–1184.
    1. Friston KJ, Stephan KE, Lund TE, Morcom A, Kiebel S (2005) Mixed-effects and fMRI studies. Neuroimage 24: 244–252.
    1. Silverman D, Dy C, Castellon S, Lai J, Pio B, et al. (2007) Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res Treat 103: 303–311.
    1. Silverman D (2009) PET in the Evaluation of Alzheimer's Disease and Related Disorders. New York: Springer.
    1. Mielke R, Schroder R, Fink GR, Kessler J, Herholz K, et al. (1996) Regional cerebral glucose metabolism and postmortem pathology in Alzheimer's disease. Acta Neuropathol 91: 174–179.
    1. Silverman D, Mosconi L, Ercoli L, Chen W, Small G (2008) Positron emission tomography scans obtained for the evaluation of cognitive dysfunction. Semin Nucl Med 38: 251–261.
    1. Phelps M, Shelbert H (1986) Positron emission tomography and autoradiography: Principles and applications for the brain and heart. New York: Raven.
    1. Mazziotta J, Frackowiak R, Phelps M (1992) The use of positron emission tomoraphy in the clinical assessment of dementia. Semin Nucl Med 22: 233–246.
    1. Duara R, Grady C, Haxby J, Sundaram M, Cutler N, et al. (1986) Positron emission tomography in Alzheimer's disease. Neurology 36: 879–887.
    1. Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron J, et al. (1999) Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer's disease. Brain 122: 1519–1531.
    1. Minoshima S, Giordani B, Berent S, Frey K, Foster N, et al. (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Annals of Neurology 42: 85–94.
    1. Rasgon N, Small G, Giddarth P, Miller K, Ercoli L, et al. (2001) Estrogen use and brain metabolic change in older adults. A preliminary report. Psychiatry Res 107: 11–18.
    1. Small G, Ercoli L, Silverman D, Huang S, Komo S, et al. (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. PNAS 97: 6037–6042.
    1. Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O'Brien PC, et al. (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: A 1H MRS study. Neurology 55: 210–217.
    1. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, et al. (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30: 1104–1113.
    1. Kordower JH, Chu Y, Stebbins GT, DeKosky ST, Cochran EJ, et al. (2001) Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 49: 202–213.
    1. Maki P, Resnick S (2000) Longitudinal effects of estrogen replacement therapy on PET cerebral blood flow and cognition. Neurobiol Aging 21: 373–383.
    1. Smith Y, Love T, Persad C, Tkaczyk A, Nichols T, et al. (2006) Impact of combined estradiol and norethindrone therapy on visuospatial working memory assessed by functional magnetic resonance imaging. J Clin Endocrinol Metab 91: 4476–4481.
    1. Wroolie TE, Kenna HA, Williams KE, Powers BN, Holcomb M, et al. (2011) Differences in verbal memory performance in postmenopausal women receiving hormone therapy: 17beta-estradiol versus conjugated equine estrogens. Am J Geriatr Psychiatry 19: 792–802.
    1. Pardo JV, Lee JT, Sheikh SA, Surerus-Johnson C, Shah H, et al. (2007) Where the brain grows old: decline in anterior cingulate and medial prefrontal function with normal aging. Neuroimage 35: 1231–1237.
    1. Rasgon N, Kenna H, Geist C, Powers B, Wroolie T, et al. Regional cerebral metabolism and neuropsychological performance among healthy postmenopausal users of estrogen therapy; 2008; Washington, D.C.
    1. Genon S, Collette F, Moulin CJ, Lekeu F, Bahri MA, et al. (2012) Verbal learning in Alzheimer's disease and mild cognitive impairment: fine-grained acquisition and short-delay consolidation performance and neural correlates. Neurobiol Aging
    1. Coker LH, Espeland MA, Rapp SR, Legault C, Resnick SM, et al. (2010) Postmenopausal hormone therapy and cognitive outcomes: the Women's Health Initiative Memory Study (WHIMS). J Steroid Biochem Mol Biol 118: 304–310.
    1. Henderson VW (2006) Estrogen-containing hormone therapy and Alzheimer's disease risk: understanding discrepant inferences from observational and experimental research. Neuroscience 138: 1031–1039.
    1. Barnes DE, Yaffe K, Byers AL, McCormick M, Schaefer C, et al. (2012) Midlife vs late-life depressive symptoms and risk of dementia: differential effects for Alzheimer disease and vascular dementia. Arch Gen Psychiatry 69: 493–498.
    1. Maeshima H, Baba H, Nakano Y, Satomura E, Namekawa Y, et al. (2012) Residual memory dysfunction in recurrent major depressive disorder–a longitudinal study from Juntendo University Mood Disorder Project. J Affect Disord 143: 84–88.
    1. Olazaran J, Trincado R, Bermejo-Pareja F (2013) Cumulative effect of depression on dementia risk. Int J Alzheimers Dis 2013: 457175.

Source: PubMed

3
Sottoscrivi