Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19

Reinhold Kreutz, Engi Abd El-Hady Algharably, Michel Azizi, Piotr Dobrowolski, Tomasz Guzik, Andrzej Januszewicz, Alexandre Persu, Aleksander Prejbisz, Thomas Günther Riemer, Ji-Guang Wang, Michel Burnier, Reinhold Kreutz, Engi Abd El-Hady Algharably, Michel Azizi, Piotr Dobrowolski, Tomasz Guzik, Andrzej Januszewicz, Alexandre Persu, Aleksander Prejbisz, Thomas Günther Riemer, Ji-Guang Wang, Michel Burnier

Abstract

Systemic arterial hypertension (referred to as hypertension herein) is a major risk factor of mortality worldwide, and its importance is further emphasized in the context of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection referred to as COVID-19. Patients with severe COVID-19 infections commonly are older and have a history of hypertension. Almost 75% of patients who have died in the pandemic in Italy had hypertension. This raised multiple questions regarding a more severe course of COVID-19 in relation to hypertension itself as well as its treatment with renin-angiotensin system (RAS) blockers, e.g. angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). We provide a critical review on the relationship of hypertension, RAS, and risk of lung injury. We demonstrate lack of sound evidence that hypertension per se is an independent risk factor for COVID-19. Interestingly, ACEIs and ARBs may be associated with lower incidence and/or improved outcome in patients with lower respiratory tract infections. We also review in detail the molecular mechanisms linking the RAS to lung damage and the potential clinical impact of treatment with RAS blockers in patients with COVID-19 and a high cardiovascular and renal risk. This is related to the role of angiotensin-converting enzyme 2 (ACE2) for SARS-CoV-2 entry into cells, and expression of ACE2 in the lung, cardiovascular system, kidney, and other tissues. In summary, a critical review of available evidence does not support a deleterious effect of RAS blockers in COVID-19 infections. Therefore, there is currently no reason to discontinue RAS blockers in stable patients facing the COVID-19 pandemic.

Keywords: Angiotensin; COVID-19; Cardiovascular; Hypertension; Lung.

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com.

Figures

Graphical Abstract
Graphical Abstract
Figure 1
Figure 1
Risk of pneumonia with use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs): meta-analysis of 37 studies. The OR with the 95% CI in parentheses is shown.
Figure 2
Figure 2
(A) Schematic diagram of the RAS in the lung showing the role of ACE2 as a key element in the counter-regulatory axis of the RAS (elements in green; reviewed in Arendse et al.54). ACE2, a membrane-bound enzyme is cleaved (shedding) by ADAM17 into a soluble form released in the body fluids. ACE2 opposes the harmful effects on lung injury of the Ang II–AT1R axis (elements in red) by activating MasR and AT2R signalling. (B) ACE2 is expressed in airway epithelial cells including alveolar epithelial type II cells (AECII) in the lung. After infection, SARS-CoV-2 binds through its viral spike protein to host cell membrane-bound ACE2, thereby promoting viral cell entry and subsequent replication. SARS-CoV-2 requires in addition the cellular serine protease TMPRSS2, which will process SARS-CoV-2 by enzymatic cleavage of the spike protein and support cell entry. Importantly, binding of SARS-CoV-2 may lead to down-regulation of ACE2, and thus its own binding receptor required for cell entry. Impairment of ACE2 activity in the lung results in activation of the harmful Ang II–AT1R axis. This aggravates the viral pathogenicity of SARS-CoV-2, tipping the scale in favour of lung damage. A soluble form of human ACE2 (rhACE2) is currently considered as a therapeutic approach to act as a decoy halting the interaction between SARS-CoV-2 and ACE2 to lessen viral entry. In addition, an inhibitor for TMPRSS2, i.e. camostat mesylate, which is available and approved for other diseases, could be considered for treatment of SARS-CoV-2 by inhibiting cell entry. Pharmacological treatment with ARBs (C) or ACEIs (D) will modulate several components of the RAS either directly or by affecting feedback loops. Treatment with ARBs protects against lung injury by AT1R receptor blockade. The corresponding increase in Ang II and Ang I levels will at the same time activate the protective axis and thereby reduce viral pathogenicity. ARBs have been shown to increase ACE2 expression in various tissues, though current evidence for the lungs (particularly in human) is lacking (Table 1). Assuming that ARBs can also up-regulate ACE2 in the lung, this will contribute to their protective effect. Protective Ang 1-7, can be also generated by neutral endopeptidase (NEP) or neprilysin. Therefore, the protective effect mediated by Ang1-7 is expected to be lower in response to treatment with ARNIs containing sacubitril. (D) Treatment with ACEIs can primarily protect from lung injury by reducing Ang II levels due to the inhibition of Ang I to Ang II conversion. Additional indirect effects supporting the protective axis can contribute to their beneficial effects. An overall effect on lung tissue protection could additionally be promoted by modulation of ACE2, albeit the data supporting this mechanism are scant (Table 1). ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; ACE, angiotensin-converting enzyme; ACE2, angiotensin-converting enzyme 2; ARNI, angiotensin receptor neprilysin inhibitor; AT1R, angiotensin II receptor type 1; AT2R, angiotensin II receptor type 2; MasR, Mas receptor; RAS, renin–-angiotensin system; rhACE2, recombinant human ACE2; TMPRSS2, type II transmembrane serine protease. Thicker arrows indicate a predominant pathway or an augmented activation; ↑↑ = up-regulation; ↑↓ = non-consistent effect.
Figure 3
Figure 3
The impact of RAS blockers on human ACE2 (hACE2) expression and SARS-CoV-2 viral cell entry is shown. Currently, no studies have reported on the effects of RAS blockers on tissue ACE2 activity in the upper or the lower respiratory tract. ACE2 is expressed in the oropharynx, ciliated upper airway epithelial cells. and in alveolar epithelial cells type II in the lung. Expression of ACE2 in the oropharynx may facilitate viral cell entry. ACE2 is also abundantly expressed in the gastrointestinal tract, particularly in the brush border membrane of human small intestine enterocytes. However, SARS-CoV-2 infectivity in the gastrointestinal tract is still poorly defined, while SARS-CoV-2 has been detected in rectal swabs or faeces of COVID-19 patients, but not yet in urine samples.

References

    1. . (30 March 2020)
    1. Dong E, Du H, Gardner L.. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020;doi: 10.1016/S1473-3099(20)30120-1.
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B.. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–1062.
    1. Soler MJ, Barrios C, Oliva R, Batlle D.. Pharmacologic modulation of ACE2 expression. Curr Hypertens Rep 2008;10:410–414.
    1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL.. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270–273.
    1. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N,, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S.. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;doi: 10.1016/j.cell.2020.02.052.
    1. . (30 March 2020).
    1. (CHT)/News/position-statement-of-the-esc-council-on-hypertension-on-ace-inhibitors-and-ang. (30 March 2020).
    1. . (30 March 2020).
    1. . (30 March 2020).
    1. Woodhead M, Blasi F, Ewig S, Garau J, Huchon G, Ieven M, Ortqvist A, Schaberg T, Torres A, van der Heijden G, Read R, Verheij TJ.. Guidelines for the management of adult lower respiratory tract infections—full version. Clin Microbiol Infect 2011;17Suppl 6:E1–E59.
    1. Gutierrez F, Masia M, Mirete C, Soldan B, Rodriguez JC, Padilla S, Hernandez I, Royo G, Martin-Hidalgo A.. The influence of age and gender on the population-based incidence of community-acquired pneumonia caused by different microbial pathogens. J Infect 2006;53:166–174.
    1. Koivula I, Sten M, Makela PH.. Risk factors for pneumonia in the elderly. Am J Med 1994;96:313–320.
    1. Corrales-Medina VF, Musher DM, Wells GA, Chirinos JA, Chen L, Fine MJ.. Cardiac complications in patients with community-acquired pneumonia: incidence, timing, risk factors, and association with short-term mortality. Circulation 2012;125:773–781.
    1. Choi J, Jang J, An Y, Park SK.. Blood pressure and the risk of death from non-cardiovascular diseases: a population-based cohort study of Korean adults. J Prev Med Public Health 2018;51:298–309.
    1. Cilli A, Erdem H, Karakurt Z, Turkan H, Yazicioglu-Mocin O, Adiguzel N, Gungor G, Bilge U, Tasci C, Yilmaz G, Oncul O, Dogan-Celik A, Erdemli O, Oztoprak N, Samur AA, Tomak Y, Inan A, Karaboga B, Tok D, Temur S, Oksuz H, Senturk O, Buyukkocak U, Yilmaz-Karadag F, Ozcengiz D, Karakas A, Savasci U, Ozgen-Alpaydin A, Kilic E, Elaldi N, Bilgic H.. Community-acquired pneumonia in patients with chronic obstructive pulmonary disease requiring admission to the intensive care unit: risk factors for mortality. J Crit Care 2013;28:975–979.
    1. Caldeira D, Alarcao J, Vaz-Carneiro A, Costa J.. Risk of pneumonia associated with use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers: systematic review and meta-analysis. BMJ 2012;345:e4260.
    1. Shah S, McArthur E, Farag A, Nartey M, Fleet JL, Knoll GA,, Kim SJ, Garg AX, Jain AK.. Risk of hospitalization for community acquired pneumonia with renin–angiotensin blockade in elderly patients: a population-based study. PLoS One 2014;9:e110165.
    1. Wu A, Good C, Downs JR, Fine MJ, Pugh MJ, Anzueto A, Mortensen EM.. The association of cardioprotective medications with pneumonia-related outcomes. PLoS One 2014;9:e85797.
    1. Kang JH, Kao LT, Lin HC, Wang TJ, Yang TY.. Do outpatient statins and ACEIs/ARBs have synergistic effects in reducing the risk of pneumonia? A population-based case–control study. PLoS One 2018;13:e0199981.
    1. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I.. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 2018;36:1953–2041.
    1. Whelton PK, Carey RM, Aronow WS,, Casey DE Jr, Collins KJ,, Dennison Himmelfarb C, DePalma SM, Gidding S,, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC Jr, Spencer CC, Stafford RS, Taler SJ,, Thomas RJ, Williams KA Sr, Williamson JD,, Wright JT Jr.. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2018;71:e127–e248.
    1. Soto M, Bang SI, McCombs J, Rodgers KE.. Renin angiotensin system-modifying therapies are associated with improved pulmonary health. Clin Diabetes Endocrinol 2017;3:6.
    1. Henry C, Zaizafoun M, Stock E, Ghamande S, Arroliga AC, White HD.. Impact of angiotensin-converting enzyme inhibitors and statins on viral pneumonia. Proc (Bayl Univ Med Cent) 2018;31:419–423.
    1. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, Alexander L, Estep K, Hassen Abate K, Akinyemiju TF, Ali R, Alvis-Guzman N, Azzopardi P, Banerjee A, Barnighausen T, Basu A, Bekele T, Bennett DA, Biadgilign S, Catala-Lopez F, Feigin VL, Fernandes JC, Fischer F, Gebru AA,, Gona P, Gupta R, Hankey GJ, Jonas JB, Judd SE, Khang YH, Khosravi A, Kim YJ, Kimokoti RW, Kokubo Y, Kolte D, Lopez A, Lotufo PA, Malekzadeh R, Melaku YA, Mensah GA, Misganaw A, Mokdad AH, Moran AE, Nawaz H, Neal B, Ngalesoni FN, Ohkubo T, Pourmalek F, Rafay A, Rai RK, Rojas-Rueda D, Sampson UK, Santos IS, Sawhney M, Schutte AE, Sepanlou SG, Shifa GT, Shiue I, Tedla BA, Thrift AG,, Tonelli M, Truelsen T, Tsilimparis N, Ukwaja KN, Uthman OA, Vasankari T, Venketasubramanian N, Vlassov VV,, Vos T, Westerman R, Yan LL, Yano Y, Yonemoto N, Zaki ME, Murray CJ.. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 2017;317:165–182.
    1. Wang Z, Chen Z, Zhang L, Wang X, Hao G, Zhang Z, Shao L, Tian Y, Dong Y, Zheng C, Wang J, Zhu M, Weintraub WS, Gao R.. Status of hypertension in China: results from the China Hypertension Survey, 2012–2015 Circulation 2018;137:2344–2356.
    1. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi 2020;41:145–151.
    1. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, Clement D, Coca A, De Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen S, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder R, Shlyakhto E, Tsioufis K, Aboyans V, Desormais I.. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens 2018;36:2284–2309.
    1. Fauci AS, Lane HC, Redfield RR.. Covid-19—navigating the uncharted. N Engl J Med 2020;382:1268–1269.
    1. Grasselli G, Pesenti A, Cecconi M.. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA 2020;doi: 10.1001/jama.2020.4031.
    1. Remuzzi A, Remuzzi G.. COVID-19 and Italy: what next? Lancet 2020;doi: 10.1016/S0140-6736(20)30627-9.
    1. Onder G, Rezza G, Brusaferro S.. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020;doi: 10.1001/jama.2020.4683.
    1. . (30 March2020).
    1. Tocci G, Nati G, Cricelli C, Parretti D, Lapi F, Ferrucci A, Borghi C, Volpe M.. Prevalence and control of hypertension in the general practice in Italy: updated analysis of a large database. J Hum Hypertens 2017;31:258–262.
    1. Fisher D, Heymann D.. Q&A: The novel coronavirus outbreak causing COVID-19. BMC Med 2020;18:57.
    1. Porcheddu R, Serra C, Kelvin D, Kelvin N, Rubino S.. Similarity in case fatality rates (CFR) of COVID-19/SARS-COV-2 in Italy and China. J Infect Dev Ctries 2020;14:125–128.
    1. Drummond G, Vinh A, Guzik T, Sobey CG.. Immune mechanisms of hypertension. Nat Rev Immunol 2019;19:517–532.
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B.. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.
    1. Carnevale D, Wenzel P.. Mechanical stretch on endothelial cells interconnects innate and adaptive immune response in hypertension. Cardiovasc Res 2018;114:1432–1434.
    1. Loperena R, Van Beusecum JP, Itani HA, Engel N, Laroumanie F, Xiao L, Elijovich F, Laffer CL, Gnecco JS, Noonan J, Maffia P, Jasiewicz-Honkisz B, Czesnikiewicz-Guzik M, Mikolajczyk T, Sliwa T, Dikalov S, Weyand CM, Guzik TJ, Harrison DG.. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc Res 2018;114:1547–1563.
    1. Czesnikiewicz-Guzik M, Osmenda G, Siedlinski M, Nosalski R, Pelka P, Nowakowski D, Wilk G, Mikolajczyk TP, Schramm-Luc A, Furtak A, Matusik P, Koziol J, Drozdz M, Munoz-Aguilera E, Tomaszewski M, Evangelou E, Caulfield M, Grodzicki T, D’Aiuto F, Guzik TJ.. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur Heart J 2019;40:3459–3470.
    1. China NHCotPsRo. Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment, 7th ed. 2020.
    1. Perrotta M, Lori A, Carnevale L, Fardella S, Cifelli G, Iacobucci R, Mastroiacovo F, Iodice D, Pallante F, Storto M, Lembo G, Carnevale D.. Deoxycorticosterone acetate-salt hypertension activates placental growth factor in the spleen to couple sympathetic drive and immune system activation. Cardiovasc Res 2018;114:456–467.
    1. Chou CH, Hung CS, Liao CW, Wei LH, Chen CW, Shun CT, Wen WF, Wan CH, Wu XM, Chang YY, Wu VC, Wu KD, Lin YH, TAIPAI Study Group. IL-6 trans-signalling contributes to aldosterone-induced cardiac fibrosis. Cardiovasc Res 2018;114:690–702.
    1. Siedlinski M,, Jozefczuk E, Xu X, Teumer A, Evangelou E, Schnabel RB, Welsh P, Maffia P, Erdmann J, Tomaszewski M, Caulfield MJ, Sattar N, Holmes MV, Guzik TJ.. White blood cells and blood pressure: a Mendelian randomization study. Circulation 2020;doi: 10.1161/CIRCULATIONAHA.119.045102.
    1. Itani HA, McMaster WG Jr, Saleh MA, Nazarewicz RR, Mikolajczyk TP, Kaszuba AM, Konior A, Prejbisz A, Januszewicz A, Norlander AE, Chen W, Bonami RH, Marshall AF, Poffenberger G, Weyand CM, Madhur MS, Moore DJ, Harrison DG, Guzik TJ.. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension 2016;68:123–132.
    1. Youn JC, Yu HT, Lim BJ, Koh MJ, Lee J, Chang DY, Choi YS, Lee SH, Kang SM, Jang Y, Yoo OJ, Shin EC, Park S.. Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension 2013;62:126–133.
    1. Ketelhuth DFJ. The immunometabolic role of indoleamine 2,3-dioxygenase in atherosclerotic cardiovascular disease: immune homeostatic mechanisms in the artery wall. Cardiovasc Res 2019;115:1408–1415.
    1. Ketelhuth DFJ, Lutgens E, Back M, Binder CJ, Van den Bossche J, Daniel C, Dumitriu IE, Hoefer I, Libby P, O’Neill L, Weber C, Evans PC.. Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovasc Res 2019;115:1385–1392.
    1. Paul M, Poyan Mehr A, Kreutz R.. Physiology of local renin–angiotensin systems. Physiol Rev 2006;86:747–803.
    1. Romero CA, Orias M, Weir MR.. Novel RAAS agonists and antagonists: clinical applications and controversies. Nat Rev Endocrinol 2015;11:242–252.
    1. Ferrario CM, Mullick AE.. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res 2017;125:57–71.
    1. Oparil S, Schmieder RE.. New approaches in the treatment of hypertension. Circ Res 2015;116:1074–1095.
    1. Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC Jr, Llorens-Cortes C, Ehlers MR, Sturrock ED.. Novel therapeutic approaches targeting the renin–angiotensin system and associated peptides in hypertension and heart failure. Pharmacol Rev 2019;71:539–570.
    1. Imai Y, Kuba K, Penninger JM.. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 2008;93:543–548.
    1. Corvol P, Williams TA, Soubrier F.. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol 1995;248:283–305.
    1. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ.. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000;275:33238–33243.
    1. Fattah C, Nather K, McCarroll CS, Hortigon-Vinagre MP, Zamora V, Flores-Munoz M, McArthur L, Zentilin L, Giacca M, Touyz RM, Smith GL, Loughrey CM, Nicklin SA.. Gene therapy with angiotensin-(1-9) preserves left ventricular systolic function after myocardial infarction. J Am Coll Cardiol 2016;68:2652–2666.
    1. Ingelfinger JR. Angiotensin-converting enzyme 2: implications for blood pressure and kidney disease. Curr Opin Nephrol Hypertens 2009;18:79–84.
    1. Ye R, Liu Z.. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS–TLR4 pathway. Exp Mol Pathol 2020;113:104350.
    1. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM.. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005;436:112–116.
    1. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM.. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005;11:875–879.
    1. Li Y, Zeng Z, Li Y, Huang W, Zhou M, Zhang X, Jiang W.. Angiotensin-converting enzyme inhibition attenuates lipopolysaccharide-induced lung injury by regulating the balance between angiotensin-converting enzyme and angiotensin-converting enzyme 2 and inhibiting mitogen-activated protein kinase activation. Shock 2015;43:395–404.
    1. Boskabadi J, Askari VR, Hosseini M, Boskabady MH.. Immunomodulatory properties of captopril, an ACE inhibitor, on LPS-induced lung inflammation and fibrosis as well as oxidative stress. Inflammopharmacology 2019;27:639–647.
    1. Liu L, Qiu HB, Yang Y, Wang L, Ding HM, Li HP.. Losartan, an antagonist of AT1 receptor for angiotensin II, attenuates lipopolysaccharide-induced acute lung injury in rat. Arch Biochem Biophys 2009;481:131–136.
    1. Deng W, Deng Y, Deng J, Wang DX, Zhang T.. Losartan attenuated lipopolysaccharide-induced lung injury by suppression of lectin-like oxidized low-density lipoprotein receptor-1. Int J Clin Exp Pathol 2015;8:15670–15676.
    1. Tan WSD, Liao W, Zhou S, Mei D, Wong WF.. Targeting the renin–angiotensin system as novel therapeutic strategy for pulmonary diseases. Curr Opin Pharmacol 2018;40:9–17.
    1. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P.. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 2002;277:14838–14843.
    1. Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, Prindle T, Fulton WB, Wang S, McCray PB Jr, Chappell M, Hackam DJ, Jia H.. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg(9) bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol 2018;314:L17–Ll31.
    1. Stoka V, Turk V.. A structural network associated with the kallikrein–kinin and renin–angiotensin systems. Biol Chem 2010;391:443–454.
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P. 2016. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016;37:2129–2200.
    1. Ruilope LM, Dukat A, Bohm M, Lacourciere Y, Gong J, Lefkowitz MP.. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 2010;375:1255–1266.
    1. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M.. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450–454.
    1. Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F.. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 2010;84:12658–12664.
    1. Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pohlmann S.. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 2011;85:4122–4134.
    1. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, Wong S-K, Huang I-C, Xu K, Vasilieva N, Murakami A, He Y, Marasco WA, Guan Y, Choe H, Farzan M.. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. The EMBO Journal 2005;24:1634–1643.
    1. Li F, Li W, Farzan M, Harrison SC.. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005;309:1864–1868.
    1. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ.. The ACE2/angiotensin-(1-7)/MAS axis of the renin–angiotensin system: focus on angiotensin-(1-7). Physiol Rev 2018;98:505–553.
    1. Sims AC, Baric RS, Yount B, Burkett SE, Collins PL, Pickles RJ.. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. J Virol 2005;79:15511–15524.
    1. Bertram S, Heurich A, Lavender H, Gierer S, Danisch S, Perin P, Lucas JM, Nelson PS, Pohlmann S, Soilleux EJ.. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One 2012;7:e35876.
    1. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H.. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203:631–637.
    1. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, Wang H, Shen H, Qiu L, Li Z, Geng J, Cai J, Han H, Li X, Kang W, Weng D, Liang P, Jiang S.. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 2004;203:622–630.
    1. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, Zhuang H, Wu B, Zhong H, Shao H, Fang W, Gao D, Pei F, Li X, He Z, Xu D, Shi X, Anderson VM, Leong AS.. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005;202:415–424.
    1. Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H, Nam K, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Watanabe S, Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M, Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu GM, Yeldandi AV, Marshall SA, Shilatifard A, Amaral LAN, Perlman H, Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M, Singer BD, Ridge KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV.. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med 2019;199:1517–1536.
    1. Chu SG, Poli De Frias S, Sakairi Y, Kelly RS, Chase R, Konishi K, Blau A, Tsai E, Tsoyi K, Padera RF, Sholl LM, Goldberg HJ, Mallidi HR, Camp PC, El-Chemaly SY, Perrella MA, Choi AMK, Washko GR, Raby BA, Rosas IO.. Biobanking and cryopreservation of human lung explants for omic analysis. Eur Respir J 2020;55;1801635.
    1. Yeo C, Kaushal S, Yeo D.. Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol 2020;5:335–337.
    1. Pan Y, Zhang D, Yang P, Poon LLM, Wang Q.. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis 2020;20:411–412.
    1. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W.. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020;doi: 10.1001/jama.2020.3786.
    1. To KK, Tsang OT, Leung WS, Tam AR,, Wu TC, Lung DC,, Yip CC, Cai JP, Chan JM, Chik TS, Lau DP, Choi CY, Chen LL, Chan WM, Chan KH, Ip JD, Ng AC, Poon RW, Luo CT,, Cheng VC, Chan JF, Hung IF, Chen Z, Chen H, Yuen KY.. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 2020; doi: 10.1016/S1473-3099(20)30196-1.
    1. Yang P, Gu H, Zhao Z, Wang W, Cao B, Lai C, Yang X, Zhang L, Duan Y, Zhang S, Chen W, Zhen W, Cai M, Penninger JM, Jiang C, Wang X.. Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury. Sci Rep 2014;4:7027.
    1. Zou Z, Yan Y, Shu Y, Gao R, Sun Y, Li X, Ju X, Liang Z, Liu Q, Zhao Y, Guo F, Bai T, Han Z, Zhu J, Zhou H, Huang F, Li C, Lu H, Li N, Li D, Jin N, Penninger JM, Jiang C.. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun 2014;5:3594.
    1. Schouten LR, van Kaam AH, Kohse F, Veltkamp F, Bos LD, de Beer FM, van Hooijdonk RT, Horn J, Straat M, Witteveen E, Glas GJ, Wieske L, van Vught LA, Wiewel MA, Ingelse SA, Cortjens B, van Woensel JB, Bos AP, Walther T, Schultz MJ, Wosten-van Asperen RM.. Age-dependent differences in pulmonary host responses in ARDS: a prospective observational cohort study. Ann Intensive Care 2019;9:55.
    1. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, Wen F, Huang X, Ning G, Wang W.. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 2020;6:11.
    1. Cai G. Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2, the receptor of 2019-nCov. medRxiv 2020:2020.2002.2005.20020107.
    1. Fang L, Karakiulakis G, Roth M.. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020;8:e21.
    1. Esler M, Esler D.. Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic? J Hypertens 2020;38:781–782.
    1. Furuhashi M, Moniwa N, Mita T, Fuseya T, Ishimura S, Ohno K, Shibata S, Tanaka M, Watanabe Y, Akasaka H, Ohnishi H, Yoshida H, Takizawa H, Saitoh S, Ura N, Shimamoto K, Miura T.. Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker. Am J Hypertens 2015;28:15–21.
    1. Abe M, Oikawa O, Okada K, Soma M.. Urinary angiotensin-converting enzyme 2 increases in diabetic nephropathy by angiotensin II type 1 receptor blocker olmesartan. J Renin Angiotensin Aldosterone Syst 2015;16:159–164.
    1. Mariana CP, Ramona PA, Ioana BC, Diana M, Claudia RC, Stefan VD, Maria KI.. Urinary angiotensin converting enzyme 2 is strongly related to urinary nephrin in type 2 diabetes patients. Int Urol Nephrol 2016;48:1491–1497.
    1. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlmann S.. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2014;88:1293–1307.
    1. Danser AHJ, Epstein M, Batlle D.. Renin–angiotensin system blockers and the COVID-19 pandemic: at present there is no evidence to abandon renin–angiotensin system blockers. Hypertension 2020;doi: 10.1161/HYPERTENSIONAHA.120.15082.
    1. Vuille-dit-Bille RN, Camargo SM, Emmenegger L, Sasse T, Kummer E, Jando J, Hamie QM, Meier CF, Hunziker S, Forras-Kaufmann Z, Kuyumcu S, Fox M, Schwizer W, Fried M, Lindenmeyer M, Gotze O, Verrey F.. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino Acids 2015;47:693–705.
    1. Schulte-Hubbert B, Meiswinkel N, Kutschan U, Kolditz M.. Prognostic value of blood pressure drops during the first 24 h after hospital admission for risk stratification of community-acquired pneumonia: a retrospective cohort study. Infection 2020;48:267–274.
    1. Rhodes A,, Evans LE, Alhazzani W, Levy MM,, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC,, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD,, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR,, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP.. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 2017;43:304–377.
    1. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, Lee M.. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA 2020;doi: 10.1001/jama.2020.4326.
    1. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O.. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiology 2020;doi: 10.1001/jamacardio.2020.1286.
    1. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z.. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020;doi: 10.1001/jamacardio.2020.1017.
    1. Tomson C, Tomlinson LA.. Stopping RAS inhibitors to minimize AKI: more harm than good? Clin J Am Soc Nephrol 2019;14:617–619.
    1. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS.. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020;46:586–590.
    1. Ishiyama Y, Gallagher PE,, Averill DB, Tallant EA, Brosnihan KB, Ferrario CM.. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension 2004;43:970–976.
    1. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, Diz DI, Gallagher PE.. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005;111:2605–2610.
    1. Ferrario CM, Jessup J, Gallagher PE, Averill DB, Brosnihan KB, Ann Tallant E, Smith RD, Chappell MC.. Effects of renin–angiotensin system blockade on renal angiotensin-(1-7) forming enzymes and receptors. Kidney Int 2005;68:2189–2196.
    1. Igase M, Strawn WB, Gallagher PE, Geary RL, Ferrario CM.. Angiotensin II AT1 receptors regulate ACE2 and angiotensin-(1-7) expression in the aorta of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2005;289:H1013–H1019.
    1. Karram T, Abbasi A, Keidar S, Golomb E, Hochberg I, Winaver J, Hoffman A, Abassi Z.. Effects of spironolactone and eprosartan on cardiac remodeling and angiotensin-converting enzyme isoforms in rats with experimental heart failure. Am J Physiol Heart Circ Physiol 2005;289:H1351–H1358.
    1. Agata J, Ura N, Yoshida H, Shinshi Y, Sasaki H, Hyakkoku M, Taniguchi S, Shimamoto K.. Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme. Hypertens Res 2006;29:865–874.
    1. Jessup JA, Gallagher PE,, Averill DB, Brosnihan KB, Tallant EA, Chappell MC, Ferrario CM.. Effect of angiotensin II blockade on a new congenic model of hypertension derived from transgenic Ren-2 rats. Am J Physiol Heart Circ Physiol 2006;291:H2166–2172.
    1. Ocaranza MP, Godoy I, Jalil JE, Varas M, Collantes P, Pinto M, Roman M, Ramirez C, Copaja M, Diaz-Araya G, Castro P, Lavandero S.. Enalapril attenuates downregulation of angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat. Hypertension 2006;48:572–578.
    1. Whaley-Connell AT, Chowdhury NA, Hayden MR, Stump CS, Habibi J, Wiedmeyer CE, Gallagher PE, Tallant EA, Cooper SA, Link CD, Ferrario C, Sowers JR.. Oxidative stress and glomerular filtration barrier injury: role of the renin–angiotensin system in the Ren2 transgenic rat. Am J Physiol Renal Physiol 2006;291:F1308–F1314.
    1. Takeda Y, Zhu A, Yoneda T, Usukura M, Takata H, Yamagishi M.. Effects of aldosterone and angiotensin II receptor blockade on cardiac angiotensinogen and angiotensin-converting enzyme 2 expression in Dahl salt-sensitive hypertensive rats. Am J Hypertens 2007;20:1119–1124.
    1. Gilliam-Davis S, Gallagher PE, Payne VS, Kasper SO, Tommasi EN, Westwood BM, Robbins ME, Chappell MC, Diz DI.. Long-term systemic angiotensin II type 1 receptor blockade regulates mRNA expression of dorsomedial medulla renin–angiotensin system components. Physiol Genomics 2011;43:829–835.
    1. Sukumaran V, Veeraveedu PT, Gurusamy N, Yamaguchi K, Lakshmanan AP, Ma M, Suzuki K, Kodama M, Watanabe K.. Cardioprotective effects of telmisartan against heart failure in rats induced by experimental autoimmune myocarditis through the modulation of angiotensin-converting enzyme-2/angiotensin 1-7/mas receptor axis. Int J Biol Sci 2011;7:1077–1092.
    1. Sukumaran V, Veeraveedu PT, Lakshmanan AP, Gurusamy N, Yamaguchi K, Ma M, Suzuki K, Kodama M, Watanabe K.. Olmesartan medoxomil treatment potently improves cardiac myosin-induced dilated cardiomyopathy via the modulation of ACE-2 and ANG 1-7 mas receptor. Free Radic Res 2012;46:850–860.
    1. Lezama-Martinez D, Flores-Monroy J, Fonseca-Coronado S, Hernandez-Campos ME, Valencia-Hernandez I, Martinez-Aguilar L.. Combined antihypertensive therapies that increase expression of cardioprotective biomarkers associated with the renin–angiotensin and kallikrein–kinin systems. J Cardiovasc Pharmacol 2018;72:291–295.
    1. Burrell LM, Risvanis J, Kubota E, Dean RG, MacDonald PS,, Lu S, Tikellis C, Grant SL, Lew RA, Smith AI, Cooper ME, Johnston CI.. Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J 2005;26:369–375.
    1. Hamming I, van Goor H, Turner AJ, Rushworth CA, Michaud AA, Corvol P, Navis G.. Differential regulation of renal angiotensin-converting enzyme (ACE) and ACE2 during ACE inhibition and dietary sodium restriction in healthy rats. Exp Physiol 2008;93:631–638.
    1. Keidar S, Gamliel-Lazarovich A, Kaplan M, Pavlotzky E, Hamoud S, Hayek T, Karry R, Abassi Z.. Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in congestive heart failure patients. Circ Res 2005;97:946–953.
    1. Stoll D, Yokota R, Sanches Aragão D, Casarini DE.. Both aldosterone and spironolactone can modulate the intracellular ACE/ANG II/AT1 and ACE2/ANG (1-7)/MAS receptor axes in human mesangial cells. Physiol Rep 2019;7:e14105.

Source: PubMed

3
Sottoscrivi